Visualizzazione post con etichetta SPAZIOPLANI. Mostra tutti i post
Visualizzazione post con etichetta SPAZIOPLANI. Mostra tutti i post

giovedì 19 novembre 2020

Lo spazioplano "Intermediate eXperimental Vehicle (IXV)": un programma dell'Agenzia Spaziale Europea


L'Intermediate eXperimental Vehicle (IXV) è un programma dell'Agenzia Spaziale Europea finalizzato alla costruzione di un veicolo spaziale sperimentale in grado di compiere un rientro atmosferico controllato da orbita terrestre bassa (circa 300 km). 


Il veicolo ha effettuato il primo test di volo senza equipaggio nel febbraio 2015, superando i test principali di manovra di rientro in atmosfera e protezione termica.


Storia del progetto

IXV è un progetto ESA che mira a convalidare le tecnologie di rientro atmosferico nell'ambito del programma FLPP. Questo programma di ricerca tecnologica si concentra sullo sviluppo di tecnologie per i futuri lanciatori europei. Il PPBM è all'origine del dimostratore rientro atmosferico atmosferica Rientro Demonstrator (ARD) lanciato nel 1998. L'IXV, attrezzato come un laboratorio volante ha assolto il rientro controllato aerodinamicamente in cui sono stati memorizzati elettronicamente diversi dati.



Gli obiettivi dell'IXV sono stati quelli di sviluppare strumenti e processi implementati durante un rientro atmosferico:
  • strumentazione aerodinamica e aerotermodinamica;
  • protezioni termiche e strutture calde; l'IXV è dotato di una vasta gamma di sistemi di protezione termica (materiali, concetti) come compositi ceramici e materiali ablativi per misurare le loro prestazioni in condizioni di volo reali;
  • controllo di volo ipersonico: guida, navigazione e controllo, motori di controllo di assetto e superfici di controllo aerodinamico; l'IXV è il primo veicolo spaziale europeo controllato da una combinazione di flap e propulsori implementati utilizzando algoritmi di guida avanzati basati su dati inerziali e ricevitori GPS;
  • modellizzazione dei fenomeni aerodinamici e termici che si verificano durante il rientro atmosferico il cui controllo ridurrebbe i margini di sicurezza incorporati nel progetto di questo tipo di veicolo.
Lo sviluppo dell’IXV prende le mosse da precedenti studi, come quello della CNES (l'agenzia spaziale francese) chiamato Pre-X e lo stesso dell'ESA chiamato AREV (Atmospheric Reentry Experimental Vehicle). Le prime fasi dello sviluppo del veicolo sono state gestite dalla compagnia NGL Prime SpA, una joint venture di EADS SPACE (70%) e Finmeccanica (30%). La fase C (finalizzazione del design) è stata assegnate a Thales Alenia Space, nella sua sede di Torino.


Caratteristiche tecniche

L'IXV è un corpo portante senza ali ma con due Flap fissati nell'estensione della fusoliera per controllarne il volo durante il rientro atmosferico. Il rientro è condotto mantenendo il muso alto, esattamente come per lo Space Shuttle, mentre la fase finale della discesa è compiuta con una catena di paracadute espulsi dalla parte alta del veicolo. Il veicolo spaziale è lungo 5 m, alto 1,5 m e largo 2,2 m con una massa di 2 ton. Per controllare il profilo di volo, l'IXV utilizza i suoi due flap e quattro motori a razzo da 400 N di spinta posizionati nella parte posteriore del corpo di trasporto. Questi propulsori sono già stati implementati ai piani superiori del lanciatore Ariane 5 e sono a propellente liquido (idrazina). Per soddisfare il suo scopo di dimostratore tecnologico, l'IXV è equipaggiato con quasi 250 sensori posizionati in diversi punti della superficie dello scafo: 37 sensori di pressione, 194 sensori di temperatura, 12 sensori di spostamento e 48 sensori che misurano le forze subite dalla carlinga o altri dati come la telecamera a infrarossi posizionata sul retro. Questi sensori sono suddivisi in due sottoinsiemi: quelli utilizzati per analizzare l'aerodinamica del veicolo e quelli interessati a sforzi termici.


Il test di volo

Il lancio, che è avvenuto utilizzando il nuovo lanciatore leggero europeo Vega, era stato inizialmente previsto entro il 2013 per essere poi stato eseguito con successo l'11 febbraio del 2015. È partito da Korou alle 13:40, a 320 km di altezza la navicella si è staccata dal lanciatore e ha volato fino a 450 km ad una velocità di circa 7,5 km/s e ha iniziato a scendere verso l'Oceano Pacifico ad un'altezza di 120 km. Tutto il volo è durato 1 ora e 39 minuti, durante il quale sono stati raccolti numerosi dati sul volo e discesa.


Progetti connessi

In concomitanza, l'Agenzia Spaziale Europea sta portando avanti: 
  • il progetto PRIDE, che prevede la costruzione di uno spazioplano sperimentale;
  • l'ISV, che adotterà molte delle scelte tecniche usate nell'IXV e basato sui risultati ottenuti dal suo volo sperimentale;
  • il Centro italiano ricerche aerospaziali e Thales Alenia Space stanno sviluppando il progetto Space Rider, un velivolo spaziale riutilizzabile, evoluzione dell'IXV, in grado di effettuare un rientro atmosferico a Terra.


Il volo dello spazioplano europeo IXV

L’Agenzia Spaziale Europea ESA ha testato il dimostratore di rientro atmosferico IXV (Intermediate Experimental Vehicle) che, dopo una parabola suborbitale di 101 minuti, è ammarato con successo nell’oceano Pacifico.
La missione era iniziata alle 14.40 italiane con il decollo, a bordo di un vettore Vega, dallo spazioporto di Kourou nella Guiana francese. Raggiunta la quota di 340 km l’IXV si è separato dall’ultimo stadio del lanciatore continuando in volo libero fino ad un’altezza di 412 km, dopodiché ha cominciato la fase di rientro in atmosfera. Lo spazioplano ha controllato il suo assetto grazie a due particolari alettoni posteriori, planando e rallentando man mano che attraversava gli strati sempre più densi dell’atmosfera. A 26 km di quota è iniziata la sequenza di frenata tramite paracadute fino all’ammaraggio nell’oceano, dove l’IXV è stato recuperato dal rimorchiatore d’altura Nos Aries del gruppo livornese Neri. La fase di rientro era proprio l’oggetto principale di questo test, infatti oltre 300 sensori hanno registrato una gran mole di dati che vengono subito dopo analizzati. “È un grande giorno per lo Spazio europeo e un grande giorno per l’Italia”, così si è espresso a Kourou il presidente dell’Agenzia Spaziale Italiana dopo lo splashdown.
 L’ASI e l’industria nazionale hanno avuto un ruolo di primaria importanza in quanto il programma IXV è guidato dall’italiano Giorgio Tumino, lo spazioplano è stato costruito a Torino presso la Thales Alenia Space,  anche il controllo missione è a Torino, presso l’ALTEC (Advanced Logistics Technology Engineering Center), e lo stesso si può dire del vettore VEGA nella cui realizzazione l’Italia è il maggior contribuente con il 65%.
I dati ottenuti sono indispensabili per la realizzazione del programma PRIDE (Programme for Reusable In-orbit Demonstrator for Europe), che vedrà lo sviluppo di un mini-shuttle (simile all’X-37/B dell’USAF) con capacità di svolgere missioni orbitali ed atterraggio in planata.


Uno sforzo tecnologico quasi tutto made in Italy

Il lancio del veicolo spaziale europeo IXV (Intermediate eXperimental Vehicle) è stato un successo in quanto tutto è filato liscio.


Lo spazioplano, tra i possibili eredi dello Space Shuttle e primo veicolo europeo a essere pensato per il rientro a Terra, è decollato a bordo di un razzo Vega, dalla base europea di Kourou (Guyana Francese), per completare la sua prima missione di volo in orbita bassa 100 minuti dopo, con un ammaraggio nel Pacifico.
I programmi della navicella IXV e del lanciatore VEGA sono stati realizzati dall'Agenzia Spaziale Europea grazie anche al rilevante contributo tecnico e finanziario dell'Agenzia Spaziale Italiana. È "made in Italy" il lanciatore, che è stato progettato e realizzato in Italia da ELV & AVIO, e lo è la navicella sperimentale IXV, anch'essa progettata e realizzata a Torino da un pool di competenze guidate dalla Thales Alenia Space Italia con i contributi del CIRA (Centro Italiano Ricerche Aerospaziali - sperimentazione, aerotermodinamica, supporto al drop test e alle operazioni di lancio), di Leonardo (Power Distribution Unit, Avionica e software), di AVIO (protezioni termiche ablative), di alcune Università italiane, del CNR/INSEAN e di tante piccole e medie imprese nazionali. Italiano è il centro controllo di ALTEC di Torino che ha gestito e monitorato tutte le operazioni di volo della navicella IXV, ma anche una delle stazioni di Terra che ha seguito il volo, quella di Malindi, gestita dall'Agenzia Spaziale Italiana. La nave NOS ARIES che ha effettuato il recupero è italiana e, non ultimo, è opportuno ricordare il contributo tecnologico fornito dalla Telespazio al segmento di terra con la rete di comunicazione: il tricolore domina in questa missione europea. Si tratta del primo esperimento di rientro controllato sub-orbitale di un veicolo spaziale in atmosfera da parte dell'Europa, fondamentale per poter studiare le caratteristiche di stabilità e di controllo d'assetto del velivolo e quelle aero-termo-dinamiche: qualcosa che per l'Europa costituisce ancora oggi materia di sperimentazione, perché gli altri paesi che hanno sviluppato tecnologie analoghe (URSS e USA in primis a partire dagli anni '60, più di recente anche Cina e India) non condividono, per ovvi motivi di riservatezza, le proprie conoscenze scientifiche e tecnologiche della delicata fase del rientro atmosferico. Il successo di questa missione conferma, inoltre, l'affidabilità e la versatilità del lanciatore VEGA: a differenza dei lanci precedenti, il VEGA ha rilasciato l'IXV ad una quota sub-orbitale a circa 330 Km. Infine, per la prima volta si lanciava verso l'equatore, mentre in passato si è lanciato con traiettorie quasi-polari. È stato necessario verificare alcune rilevazioni di telemetria da terra. Ciò ha comportato la sospensione e poi la ripresa delle operazioni in sicurezza.


Attualmente è in corso una approfondita analisi al CIRA dei dati scientifici registrati da IXV durante la fase di rientro:
  • analizzare l'interazione aerotermodinamica nel volo ipersonico tra un veicolo di questa tipologia "lifting body" e il plasma atmosferico, 
  • studiare il comportamento dei materiali speciali nella resistenza e nello smaltimento del calore e infine valutare il controllo e la stabilità dell'assetto durante il rientro rappresentano il valore aggiunto della missione.
I dati sperimentali acquisiti con questa missione e la loro analisi sono i tasselli fondamentali per la progettazione e la realizzazione di possibili futuri sistemi di rientro europei come, ad esempio, il programma PRIDE che l'Italia sta portando avanti con il supporto tecnico e scientifico dell'ASI e del CIRA.
Di recente è stata presa la decisione di finanziare il programma PRIDE che prevede lo sviluppo di tecnologie per lo sviluppo di veicoli spaziali automatici di rientro a terra. 
Il CIRA, forte delle rilevanti esperienze tecnologiche e scientifiche maturate nei programmi Unmanned Space Vehicle e IXV, avrà certamente un ruolo di primo piano nei prossimi sviluppi di “spazioplani” europei.

ENGLISH


The Intermediate eXperimental Vehicle (IXV) is a programme of the European Space Agency aimed at building an experimental spacecraft capable of making a controlled atmospheric re-entry from low Earth orbit (about 300 km). The vehicle performed its first unmanned flight test in February 2015, passing the main tests of atmospheric re-entry manoeuvre and thermal protection.


Project history


IXV is an ESA project that aims to validate atmospheric re-entry technologies within the FLPP programme. This technological research programme focuses on the development of technologies for future European launchers. PPBM is at the origin of the Atmospheric Re-entry Demonstrator (ARD) launched in 1998. The IXV, equipped as a flying laboratory, performs re-entry, aerodynamically controlled, in which various data will be stored.


The objectives of the IXV are to develop tools and processes implemented during atmospheric re-entry:

aerodynamic and aerothermodynamic instrumentation;

thermal protection and hot structures; the IXV is equipped with a wide range of thermal protection systems (materials, concepts) such as ceramic composites and ablative materials to measure their performance in real flight conditions;

hypersonic flight control: guidance, navigation and control, attitude control engines and aerodynamic control surfaces; the IXV is the first European spacecraft controlled by a combination of flaps and thrusters implemented using advanced guidance algorithms based on inertial data and GPS receivers;

modelling of aerodynamic and thermal phenomena occurring during atmospheric re-entry whose control would reduce the safety margins incorporated in the design of this type of vehicle.


The development of the IXV is based on previous studies, such as the CNES (the French space agency) called Pre-X and the ESA's Atmospheric Reentry Experimental Vehicle (AREV). The first phases of the vehicle's development were managed by NGL Prime SpA, a joint venture of EADS SPACE (70%) and Finmeccanica (30%). Phase C (finalisation of the design) was assigned to Thales Alenia Space, at its Turin headquarters.


Technical characteristics


The IXV is a wing-less carrier body with two Flaps fixed in the fuselage extension to control flight during atmospheric re-entry. The re-entry is conducted keeping the nose high, just like for the Space Shuttle, while the final phase of the descent is completed with a chain of parachutes ejected from the top of the vehicle. The spacecraft is 5 m long, 1.5 m high and 2.2 m wide with a mass of 2 tons. To control the flight profile, the IXV uses its two flaps and four 400 N thrust rocket motors positioned at the rear of the transport body. These thrusters have already been implemented on the upper floors of the Ariane 5 launcher and are liquid propellant (hydrazine). To satisfy its purpose as a technological demonstrator, the IXV is equipped with almost 250 sensors positioned at different points on the hull surface: 37 pressure sensors, 194 temperature sensors, 12 displacement sensors and 48 sensors that measure the forces suffered by the nacelle or other data such as the infrared camera positioned at the rear. These sensors are divided into two sub-sets: those used to analyse the aerodynamics of the vehicle and those affected by thermal stress.


Test flight


The launch, which took place using the new European light launcher Vega, was initially planned to take place by 2013 and was then successfully completed on 11 February 2015. It departed from Korou at 1:40 pm, at an altitude of 320 km, the spacecraft detached from the launcher and flew up to 450 km at a speed of about 7.5 km/s and began descending towards the Pacific Ocean at an altitude of 120 km. The entire flight lasted 1 hour and 39 minutes, during which a great deal of data was collected on the flight and descent.


Related projects


In parallel, the European Space Agency is pursuing the PRIDE project, which involves the construction of an experimental space plane, the ISV, which will adopt many of the technical choices used in the IXV and based on the results obtained from its experimental flight.

The Italian Aerospace Research Centre and Thales Alenia Space are developing the Space Rider project, a reusable space aircraft, an evolution of the IXV, capable of atmospheric re-entry to Earth.



The flight of the European spaceplane IXV


The European Space Agency ESA has tested the IXV (Intermediate Experimental Vehicle) atmospheric re-entry demonstrator which, after a suborbital parabola of 101 minutes, successfully landed in the Pacific Ocean.

The mission had started at 14.40 Italian time with the take-off, on board a Vega carrier, from Kourou spaceport in French Guiana. Having reached an altitude of 340 km, the IXV separated from the last stage of the launcher, continuing in free flight to an altitude of 412 km, after which it began its re-entry into the atmosphere. The spaceplane controlled its attitude thanks to two special rear ailerons, gliding and slowing down as it crossed the increasingly dense layers of the atmosphere. At an altitude of 26 km, the braking sequence began with a parachute until it landed in the ocean, where the IXV was recovered by the deep-sea tug Nos Aries of the Livorno-based Neri group.

The re-entry phase was the main object of this test, in fact more than 300 sensors recorded a large amount of data that are analyzed immediately afterwards. "It is a great day for the European Space and a great day for Italy", said the President of the Italian Space Agency in Kourou after the splashdown.
The ASI and national industry have played a major role as the IXV programme is led by the Italian Giorgio Tumino, the space plane was built in Turin at Thales Alenia Space, the mission control is also in Turin at ALTEC (Advanced Logistics Technology Engineering Center), and the same can be said of the VEGA vector in whose implementation Italy is the largest contributor with 65%.

The data obtained are indispensable for the implementation of the PRIDE programme (Programme for Reusable In-orbit Demonstrator for Europe), which will see the development of a mini-shuttle (similar to USAF's X-37/B) with the capacity to perform orbital missions and glide landings.


The launch is almost entirely made in Italy


The launch of the European space vehicle IXV (Intermediate eXperimental Vehicle) was a success as everything went smoothly.

The spaceplane, one of the possible heirs of the Space Shuttle and the first European vehicle to be designed to return to Earth, took off aboard a Vega rocket from the European base in Kourou (French Guiana) to complete its first low orbit flight mission 100 minutes later, with a ditching in the Pacific.

The programmes of the IXV spacecraft and the VEGA launcher were carried out by the European Space Agency thanks to the significant technical and financial contribution of the Italian Space Agency. The launcher, which was designed and built in Italy by ELV & AVIO, is "made in Italy", as is the experimental IXV spacecraft, also designed and built in Turin by a pool of expertise led by Thales Alenia Space Italia with contributions from CIRA (Italian Aerospace Research Centre - Experimentation, aerothermodynamics, drop test support and launch operations), SELEX (Power Distribution Unit), Alenia Aermacchi (Avionics and software), AVIO (ablative thermal protection), a number of Italian universities, CNR/INSEAN and many small and medium-sized national companies. Italiano is the control centre of ALTEC in Turin, which managed and monitored all the flight operations of the IXV spacecraft, but also one of the ground stations that followed the flight, that of Malindi, managed by the Italian Space Agency. The NOS ARIES ship that carried out the recovery is Italian and, last but not least, it is worth mentioning the technological contribution made by Telespazio to the ground segment with the communication network: the Italian flag dominates in this European mission. This is the first sub-orbital controlled re-entry experiment of a spacecraft into the atmosphere by Europe, which is fundamental for studying the stability and attitude control characteristics of the aircraft and the aerothermodynamic characteristics: something that is still a subject of experimentation for Europe today, because the other countries that have developed similar technologies (the Soviet Union and the United States first and foremost since the 1960s, and more recently China and India) do not share, for obvious reasons of confidentiality, their own scientific and technological knowledge of the delicate atmospheric re-entry phase. The success of this mission also confirms the reliability and versatility of the VEGA launcher: unlike previous launches, VEGA released the IXV at a sub-orbital altitude of about 330 km. 

Finally, for the first time it launched itself towards the equator, while in the past it launched with quasi-polar trajectories. It was necessary to verify some telemetry measurements from the ground. This led to the suspension and then the resumption of operations in safety.

A demanding phase of analysis is now underway at the CIRA of the scientific data recorded by IXV during the re-entry phase:

Analyse the aerothermodynamic interaction in hypersonic flight between a vehicle of this type "lifting body" and atmospheric plasma, 

studying the behaviour of special materials in resistance and heat dissipation and finally assessing the control and stability of the trim during re-entry represent the added value of the mission.


The experimental data acquired with this mission and their analysis are the fundamental elements for the design and implementation of possible future European re-entry systems such as, for example, the PRIDE programme that Italy is carrying out with the technical and scientific support of ASI and CIRA.

A decision has recently been taken to finance the PRIDE programme, which provides for the development of technologies for the development of automatic ground return space vehicles. 

CIRA, on the strength of the relevant technological and scientific experience gained in the Unmanned Space Vehicle and IXV programmes, will certainly play a leading role in the forthcoming developments of European "space planes”.



(Web, Google, astronautinews, Wikipedia, Focus, You Tube)













 

venerdì 18 settembre 2020

Il North American X-15 (NA-240) era un aereo-razzo statunitense



Il North American X-15 (NA-240) era un aereo-razzo statunitense, dimostratore tecnologico monoposto con ala trapezoidale, facente parte della serie di aerei X, velivoli sperimentali sviluppati per conto dell'USAF, NASA e U.S.Navy a partire dal Bell X-1.




Storia del progetto

Furono costruiti tre aerei X-15, che eseguirono in totale 199 voli tra il 1959 e il 1968. Sull'X-15 volarono 12 piloti. Il primo volo dell'X-15 ebbe luogo l'8 giugno del 1959. Nel 1963, il 19 luglio e il 22 agosto, con il Volo 90 e il Volo 91, il pilota Joseph A. Walker stabilì i record di altezza raggiungendo rispettivamente i 105,9 e 107,8 km; in questo modo, avendo superato la quota di 100 km fissata per i voli spaziali, Walker divenne il primo astronauta ad eseguire un volo suborbitale con un veicolo riutilizzabile, nonché il primo uomo ad andare due volte nello spazio. Il record di velocità venne invece stabilito il 3 ottobre 1967 con il Volo 188, in cui il pilota William J. Knight raggiunse la velocità di 7272,6 km/h. Il Volo 191, svoltosi il 15 novembre 1967, si concluse tragicamente con la morte del pilota Michael Adams. L'ultimo volo fu realizzato il 24 ottobre del 1968. I record di altezza raggiunti dall'X-15 furono superati solo nel 2004 con il volo dello SpaceShipOne, mentre il record di velocità fu superato ancora nel 2004 dallo Scramjet X-43.



Impiego operativo

L' X-15 conseguì numerosi record di velocità e altezza nei primi anni sessanta, raggiungendo il confine tra l'atmosfera e lo spazio, ritornando con dati preziosi che sono stati usati in seguito per la progettazione di altri aerei e veicoli spaziali. Potrebbe essere considerato il primo veicolo spaziale per voli suborbitali con equipaggio.
Nel corso del programma X-15, 13 voli (eseguiti da otto piloti) soddisfecero il requisito dell'USAF per essere considerati voli spaziali, superando l'altitudine di 50 miglia (80 km). Di conseguenza ai piloti fu riconosciuto la status di astronauta dall'USAF. Tre piloti di X-15 vennero in seguito anche qualificati come astronauti della NASA, tra cui Neil Armstrong (che in seguito divenne il primo uomo sulla luna) e Joseph Engle (poi divenuto comandante dello Space Shuttle). Alcuni accreditati ricercatori aerospaziali hanno fissato la soglia dello spazio ad altitudini più basse rispetto all'USAF e alla NASA, e con questa definizione molti altri piloti di X-15 potrebbero essere considerati come astronauti. Secondo questi studiosi, la regione detta "aeropausa", dove si cominciano a manifestare condizioni equivalenti a quelle nello spazio, inizierebbe a 30 km di quota. Molti piloti di X-15 viaggiarono quindi ben oltre l'aeropausa.
Due voli di X-15, eseguiti dallo stesso pilota nel 1963, superarono la più severa definizione di spazio data dalla Federazione Aeronautica Internazionale superando la soglia dei 100 km.




ENGLISH

The North American X-15 was a hypersonic rocket-powered aircraft operated by the United States Air Force and the National Aeronautics and Space Administration as part of the X-plane series of experimental aircraft. The X-15 set speed and altitude records in the 1960s, reaching the edge of outer space and returning with valuable data used in aircraft and spacecraft design. The X-15's official world record for the highest speed ever recorded by a crewed, powered aircraft, set in October 1967 when William J. Knight flew at Mach 6.70 at 102,100 feet (31,120 m), a speed of 4,520 miles per hour (7,274 km/h; 2,021 m/s), has remained unbroken as of September 2020.
During the X-15 program, 12 pilots flew a combined 199 flights. Of these, 8 pilots flew a combined 13 flights which met the Air Force spaceflight criterion by exceeding the altitude of 50 miles (80 km), thus qualifying these pilots as being astronauts. The Air Force pilots qualified for military astronaut wings immediately, while the civilian pilots were eventually awarded NASA astronaut wings in 2005, 35 years after the last X-15 flight.




Design and development

The X-15 was based on a concept study from Walter Dornberger for the National Advisory Committee for Aeronautics (NACA) for a hypersonic research aircraft. The requests for proposal (RFPs) were published on 30 December 1954 for the airframe and on 4 February 1955 for the rocket engine. The X-15 was built by two manufacturers: North American Aviation was contracted for the airframe in November 1955, and Reaction Motors was contracted for building the engines in 1956.
Like many X-series aircraft, the X-15 was designed to be carried aloft and drop launched from under the wing of a B-52 mother ship. Air Force NB-52A, "The High and Mighty One" (serial 52-0003), and NB-52B, "The Challenger" (serial 52-0008, a.k.a. Balls 8) served as carrier planes for all X-15 flights. Release took place at an altitude of about 8.5 miles (13.7 km) and a speed of about 500 miles per hour (805 km/h). The X-15 fuselage was long and cylindrical, with rear fairings that flattened its appearance, and thick, dorsal and ventral wedge-fin stabilizers. Parts of the fuselage were heat-resistant nickel alloy (Inconel-X 750). The retractable landing gear comprised a nose-wheel carriage and two rear skids. The skids did not extend beyond the ventral fin, which required the pilot to jettison the lower fin just before landing. The lower fin was recovered by parachute.




Cockpit and pilot systems

The X-15 was the product of developmental research, and changes were made to various systems over the course of the program and between the different models. The X-15 was operated under several different scenarios, including attachment to a launch aircraft, drop, main engine start and acceleration, ballistic flight into thin air/space, re-entry into thicker air, unpowered glide to landing, and direct landing without a main-engine start. The main rocket engine operated only for a relatively short part of the flight, but boosted the X-15 to its high speeds and altitudes. Without main engine thrust, the X-15's instruments and control surfaces remained functional, but the aircraft could not maintain altitude.
Because the X-15 also had to be controlled in an environment where there was too little air for aerodynamic flight control surfaces, it had a reaction control system (RCS) that used rocket thrusters. There were two different X-15 pilot control setups: one used three joysticks, the other, one joystick.
The X-15 type with multiple control sticks for the pilot placed a traditional rudder and stick between a left joystick that sent commands to the Reaction Control System, and a third joystick on the right used during high-G maneuvers to augment the center stick. In addition to pilot input, the X-15 "Stability Augmentation System" (SAS) sent inputs to the aerodynamic controls to help the pilot maintain attitude control. The Reaction Control System (RCS) could be operated in two modes – manual and automatic. The automatic mode used a feature called "Reaction Augmentation System" (RAS) that helped stabilize the vehicle at high altitude. The RAS was typically used for approximately three minutes of an X-15 flight before automatic power off.
The alternative control setup used the MH-96 flight control system, which allowed one joystick in place of three and simplified pilot input. The MH-96 could automatically blend aerodynamic and rocket controls, depending on how effective each system was at controlling the aircraft.
Among the many controls were the rocket engine throttle and a control for jettisoning the ventral tail fin. Other features of the cockpit included heated windows to prevent icing and a forward headrest for periods of high deceleration.
The X-15 had an ejection seat designed to operate at speeds up to Mach 4 (4,480 km/h; 2,784 mph) and/or 120,000 feet (37 km) altitude, although it was never used during the program. In the event of ejection, the seat was designed to deploy fins, which were used until it reached a safer speed/altitude at which to deploy its main parachute. Pilots wore pressure suits, which could be pressurized with nitrogen gas. Above 35,000 feet (11 km) altitude, the cockpit was pressurized to 3.5 psi (0.24 atm) with nitrogen gas, while oxygen for breathing was fed separately to the pilot.




Propulsion

The initial 24 powered flights used two Reaction Motors XLR11 liquid-propellant rocket engines, enhanced to provide a total of 16,000 pounds-force (71 kN) of thrust as compared to the 6,000 pounds-force (27 kN) that a single XLR11 provided in 1947 to make the Bell X-1 the first aircraft to fly faster than the speed of sound. The XLR11 used ethyl alcohol and liquid oxygen.
By November 1960, Reaction Motors was able to deliver the XLR99 rocket engine, generating 57,000 pounds-force (250 kN) of thrust. The remaining 175 flights of the X-15 used XLR99 engines, in a single engine configuration. The XLR99 used anhydrous ammonia and liquid oxygen as propellant, and hydrogen peroxide to drive the high-speed turbopump that delivered propellants to the engine. It could burn 15,000 pounds (6,804 kg) of propellant in 80 seconds; Jules Bergman titled his book on the program Ninety Seconds to Space to describe the total powered flight time of the aircraft.
The X-15 reaction control system (RCS), for maneuvering in the low-pressure/density environment, used high-test peroxide (HTP), which decomposes into water and oxygen in the presence of a catalyst and could provide a specific impulse of 140 seconds. The HTP also fueled a turbopump for the main engines and auxiliary power units (APUs). Additional tanks for helium and liquid nitrogen performed other functions; the fuselage interior was purged with helium gas, and liquid nitrogen was used as coolant for various systems.




Wedge tail and hypersonic stability

The X-15 had a thick wedge tail to enable it to fly in a steady manner at hypersonic speeds. This produced a significant amount of base drag at lower speeds; the blunt end at the rear of the X-15 could produce as much drag as an entire F-104 Starfighter.
A wedge shape was used because it is more effective than the conventional tail as a stabilizing surface at hypersonic speeds. A vertical-tail area equal to 60 percent of the wing area was required to give the X-15 adequate directional stability.
— Wendell H. Stillwell, X-15 Research Results (SP-60)
Stability at hypersonic speeds was aided by side panels which could be extended from the tail to increase the overall surface area, and these panels doubled as air brakes.




Operational history

Altitudes attained by X-15 aircraft fell short of those of Alan Shepard's and Gus Grissom's Project Mercury space capsules in 1961, or of any other human spacecraft. However, the X-15 ranks supreme among crewed rocket-powered aircraft, becoming the world's first operational spaceplane in the early 1960s.
Before 1958, United States Air Force (USAF) and NACA officials discussed an orbital X-15 spaceplane, the X-15B that would launch into outer space from atop an SM-64 Navaho missile. This was canceled when the NACA became NASA and adopted Project Mercury instead.
By 1959, the Boeing X-20 Dyna-Soar space-glider program was to become the USAF's preferred means for launching military crewed spacecraft into orbit. This program was canceled in the early 1960s before an operational vehicle could be built. Various configurations of the Navaho were considered, and another proposal involved a Titan I stage.
Three X-15s were built, flying 199 test flights, the last on 24 October 1968.
The first X-15 flight was an unpowered glide flight by Scott Crossfield, on 8 June 1959. Crossfield also piloted the first powered flight on 17 September 1959, and his first flight with the XLR-99 rocket engine on 15 November 1960. Twelve test pilots flew the X-15. Among these were Neil Armstrong, later a NASA astronaut and first man to set foot on the Moon, and Joe Engle, later a commander of NASA Space Shuttle missions.
In a 1962 proposal, NASA considered using the B-52/X-15 as a launch platform for a Blue Scout rocket to place satellites weighing up to 150 pounds (68 kg) into orbit.
In July and August 1963, pilot Joe Walker exceeded 100 km in altitude, joining NASA astronauts and Soviet cosmonauts as the first human beings to cross that line on their way to outer space. The USAF awarded astronaut wings to anyone achieving an altitude of 50 miles (80 km), while the FAI set the limit of space at 100 kilometers (62.1 mi).
On 15 November 1967, U.S. Air Force test pilot Major Michael J. Adams was killed during X-15 Flight 191 when X-15-3, AF Ser. No. 56-6672, entered a hypersonic spin while descending, then oscillated violently as aerodynamic forces increased after re-entry. As his aircraft's flight control system operated the control surfaces to their limits, acceleration built to 15 g0 (150 m/s2) vertical and 8.0 g0 (78 m/s2) lateral. The airframe broke apart at 60,000 feet (18 km) altitude, scattering the X-15's wreckage across 50 square miles (130 km2). On 8 May 2004, a monument was erected at the cockpit's locale, near Johannesburg, California. Major Adams was posthumously awarded Air Force astronaut wings for his final flight in X-15-3, which had reached an altitude of 50.4 miles (81.1 km). In 1991, his name was added to the Astronaut Memorial.
The second plane, X-15-2, was rebuilt after a landing accident on 9 November 1962 which damaged the craft and injured its pilot, John McKay. It was lengthened by 2.4 feet (73 cm), had a pair of auxiliary fuel tanks attached beneath its fuselage and wings, and a complete heat-resistant ablative coating was added. The plane was renamed the X-15A-2, and took flight for the first time on 25 June 1964. It reached its maximum speed of 4,520 miles per hour (7,274 km/h) in October 1967 with pilot William "Pete" Knight of the U.S. Air Force in control.
Five principal aircraft were used during the X-15 program: three X-15 planes and two modified "nonstandard" NB-52 bombers:
  • X-15-1 – 56-6670, 81 free flights
  • X-15-2 (later X-15A-2) – 56-6671, 31 free flights as X-15-2, 22 free flights as X-15A-2; 53 in total
  • X-15-3 – 56-6672, 65 free flights, including the Flight 191 disaster
  • NB-52A – 52-003 nicknamed The High and Mighty One (retired in October 1969)
  • NB-52B – 52-008 nicknamed The Challenger, later Balls 8 (retired in November 2004).



Additionally, F-100, F-104 and F5D chase aircraft and C-130 and C-47 transports supported the program.
A 200th flight over Nevada was first scheduled for 21 November 1968, to be flown by William "Pete" Knight. Numerous technical problems and outbreaks of bad weather delayed this proposed flight six times, and it was permanently canceled on 20 December 1968. This X-15 (56-6670) was detached from the B-52 and then put into indefinite storage. The aircraft was later donated to the Smithsonian Air & Space Museum for display.


Current static displays

X-15-1 (AF Ser. No. 56-6670) was on display in the National Air and Space Museum "Milestones of Flight" gallery, Washington, D.C., (Due to renovations of the museum, the aircraft is temporarily no longer on display).
X-15A-2 (AF Ser. No. 56-6671) is at the National Museum of the United States Air Force, at Wright-Patterson Air Force Base, near Dayton, Ohio. It was retired to the museum in October 1969. The aircraft is displayed in the museum's Research and Development Gallery alongside other "X-planes", including the Bell X-1B and Douglas X-3 Stiletto.




Mockups

Dryden Flight Research Center, Edwards AFB, California, United States (painted with AF Ser. No. 56-6672)
Pima Air & Space Museum, adjacent to Davis-Monthan AFB, Tucson, Arizona (painted with AF Ser. No. 56-6671)
Evergreen Aviation & Space Museum, McMinnville, Oregon (painted with AF Ser. No. 56-6672). A full-scale wooden mockup of the X-15, it is displayed along with one of the rocket engines.

Stratofortress mother ships

NB-52A (AF Ser. No. 52-003) is displayed at the Pima Air & Space Museum adjacent to Davis–Monthan AFB in Tucson, Arizona. It launched the X-15-1 30 times, the X-15-2, 11 times, and the X-15-3 31 times (as well as the M2-F2 four times, the HL-10 11 times and the X-24A twice).
NB-52B (AF Ser. No. 52-008) is on permanent display outside the north gate of Edwards AFB, California. It launched the majority of X-15 flights.




Record flights

Highest flights

Over thirteen flights, eight pilots flew above 264,000 feet or 50 miles, thereby qualifying as astronauts according to the United States definition of the space border. All five Air Force pilots flew above 50 miles and were awarded military astronaut wings contemporaneously with their achievements, including Adams, who received the distinction posthumously following the flight 191 disaster. However the other three were NASA employees, and did not receive a comparable decoration at the time. In 2004, the Federal Aviation Administration conferred its first-ever commercial astronaut wings on Mike Melvill and Brian Binnie, pilots of the commercial SpaceShipOne, another spaceplane with a flight profile comparable to the X-15's. Following this in 2005, NASA retroactively awarded its civilian astronaut wings to Dana (then living), and to McKay and Walker (posthumously). Forrest S. Petersen, the only Navy pilot in the X-15 program, never took the aircraft above the requisite altitude and thus never earned astronaut wings.
Of the thirteen flights, only two – flights 90 and 91, piloted by Walker – exceeded the Kármán line, the internationally recognized 100 km altitude used by the FAI to denote the edge of space.

Specifications

General characteristics
  • Crew: One
  • Length: 50 ft 9 in (15.47 m)
  • Wingspan: 22 ft 4 in (6.81 m)
  • Height: 13 ft 3 in (4.04 m)
  • Wing area: 200 sq ft (19 m2)
  • Empty weight: 14,600 lb (6,622 kg)
  • Powerplant: 1 × Reaction Motors XLR99-RM-2 liquid-fuelled rocket engine, 70,400 lbf (313 kN) thrust.

Performance
  • Maximum speed: 4,520 mph (7,270 km/h, 3,930 kn)
  • Range: 280 mi (450 km, 240 nmi)
  • Service ceiling: 354,330 ft (108,000 m)
  • Rate of climb: 60,000 ft/min (300 m/s)
  • Thrust/weight: 2.07.

(Web, Google, Wikipedia, You Tube)





















































 

US NAVY: in data 7 maggio 2024, il DDG USS Zumwalt (DDG 1000) procede verso l'integrazione del Conventional Prompt Strike (CPS) con la rimozione di uno dei suoi Advanced Gun System (AGS), considerati da tempo non idonei nel rapporto costo/efficacia.

https://svppbellum.blogspot.com/ Blog dedicato agli appassionati di DIFESA,  storia militare, sicurezza e tecnologia.  La bandiera è un simb...