martedì 15 ottobre 2019

La tragedia dell'SSN K-278 Komsomolec, in russo: Комсомолец, progetto 685 Plavnik, codice NATO classe Mike



Il K-278 Komsomolec, (traslitterato anche come Komsomolets russo: Комсомолец) era un sottomarino nucleare da attacco della Marina Sovietica (VMF) entrato in servizio negli anni ottanta. Fu l'unica unità della classe sperimentale Progetto 685 Plavnik, codice NATO classe Mike, pensato per testare alcune tecnologie particolarmente avanzate ed operare a profondità superiori a 1.000 metri.
Il K-278 affondò a causa di un incendio il 7 aprile 1989 nel Mare di Norvegia, alcune centinaia di chilometri a nord della città di Tromsø.



Sviluppo

I tecnici sovietici iniziarono a lavorare al Progetto 685 Plavnik (pinna in lingua russa) fin dagli anni sessanta, ma la costruzione del primo esemplare venne intrapresa presso il cantiere navale di Severodvinsk solo nel 1978. Si trattava di un esemplare unico, costruito per testare una serie di tecnologie particolarmente avanzate. Il battello venne varato il 9 maggio 1983, ed entrò in servizio il 31 dicembre dell'anno successivo.
In Occidente venne identificato con il nome in codice NATO di classe Mike. Il K-278 fu il solo della sua classe ad entrare in servizio. La costruzione di un ulteriore esemplare venne iniziata, sempre a Severodvinsk, ma i lavori non furono mai ultimati.



Tecnica

Il K-278 era un sottomarino nucleare da attacco, lungo 117,5 metri e largo 10,7. Si trattava di un battello a doppio scafo, con quello interno in titanio. L'utilizzo di questo materiale consentiva di operare a profondità estreme, di molto superiori a quelle dei contemporanei battelli occidentali: infatti, la profondità operativa era di 1.000 metri, quella massima operativa di 1.250 metri e quella di rottura di 1.500 metri. 
Lo scafo interno, pressurizzato, era organizzato in sette compartimenti:
  • sala siluri;
  • alloggi;
  • sala controllo;
  • compartimento reattore;
  • motori elettrici;
  • turbine;
  • meccanismi ausiliari.



Inoltre, sistemata nello scafo, vi era anche una sfera di salvataggio, in modo da consentire l'evacuazione dell'equipaggio in caso di incidente.
La propulsione era assicurata da un singolo reattore nucleare ad acqua pressurizzata del tipo OK-650 b-3 da 190 MW, che consentiva una velocità massima nell'ordine dei 14 nodi in superficie e dei 26-30 in immersione. Inizialmente, l'intelligence occidentale ritenne che in realtà i reattori imbarcati fossero due, del tipo a metallo liquido. Questo portò la NATO a sovrastimare la reale velocità massima del sottomarino (36-38 nodi).
L'armamento era costituito da sei tubi lanciasiluri da 533 mm, mentre il munizionamento comprendeva normali siluri e missili, sia antinave, sia da crociera (questi ultimi con la possibilità di imbarcare testate nucleari).



L’affondamento

Il 7 aprile 1989 il sottomarino, al comando del capitano Evgeny Vanin, navigava alla profondità di 335 metri a circa 180 chilometri (100 miglia nautiche) a sudovest dell'Isola degli Orsi in Norvegia. Un violento incendio si scatenò nei compartimenti di poppa e, nonostante venissero immediatamente chiusi i portelli stagni, le fiamme si propagarono attraverso le paratie seguendo il percorso dei cavi che attraversavano il sottomarino. Il reattore nucleare fu fermato con un arresto d'emergenza (SCRAM) causando la perdita della propulsione. Inoltre il controllo del battello divenne difficoltoso a causa di problemi elettrici causati ai cablaggi dall'incendio. Il comandante ordinò un'emersione di emergenza ed il sottomarino emerse, undici minuti dopo lo scoppio dell'incendio. Furono effettuate alcune chiamate d'emergenza ed evacuati i sopravvissuti.
Il fuoco continuò a bruciare alimentato dal sistema di aria compressa del sottomarino. Alcune ore dopo essere emerso il battello affondò definitivamente su di un fondale di 1680 metri. Il comandante e quattro altri membri dell'equipaggio che erano ancora a bordo entrarono nella capsula di emergenza e la sganciarono: a causa del suo parziale allagamento e della presenza di gas tossici, solo uno dei cinque raggiunse vivo la superficie.
Alcuni aeroplani inviati in soccorso giunsero rapidamente e lanciarono alcune piccole zattere di salvataggio ma molti uomini erano già morti per l'ipotermia causata dalle freddissime acque (circa 2°C) del mare di Barents. Il peschereccio Aleksey Khlobystov giunse 81 minuti dopo l'affondamento del K-278 e prese a bordo 25 sopravvissuti e 5 cadaveri. In totale perirono 42 uomini nell'incidente.
Diverse spedizioni scientifiche hanno verificato lo stato del sottomarino negli anni: nel 2019 una di queste spedizioni ha raccolto campioni di acqua attorno al relitto e all'interno di un condotto di ventilazione del Komsomolec; dai risultati preliminari risulta che, in uno dei campioni del condotto, sia presente un livello di radioattività pari a 800 becquerel per litro, cioè 800.000 volte il livello naturale, sebbene altri campioni non contengano valori così elevati.



ENGLISH

K-278 Komsomolets was the only Project 685 Plavnik (Плавник, meaning "fin", also known by its NATO reporting name of "Mike"-class) nuclear-powered attack submarine of the Soviet Navy. On 4 August 1984 K-278 reached a record depth of 1,020 metres (3,350 feet) in the Norwegian Sea. Although it was developed mostly to test technology for fourth-generation nuclear submarines, it was fully combat capable. It sank on its first operational patrol, in 1989, after a fire broke out in the aft engineering compartment.
The Komsomolets was able to surface after the fire started and remained afloat for approximately 5 hours before sinking. Of the 42 crew members who died, only 4 were killed by the fire and smoke, while 34 died of hypothermia, drowning in the frigid waters while awaiting rescue that did not arrive in time. Because of the loss of life, a public enquiry was conducted and, as a result, many formerly classified details were revealed by the Soviet news media.
The wrecked submarine is on the floor of the Barents Sea, about 1.6km (1 mile) deep, with its nuclear reactor and two nuclear warheads still on board.
Design
The Project 685 was designed by the Rubin Design Bureau in response to a challenge to develop an advanced submarine that could carry a mix of torpedoes and cruise missiles with conventional or nuclear warheads. The order to design the submarine was issued in 1966 and design was completed in 1974. The keel was laid down on 22 April 1978 at Severodvinsk. K-278 was launched on 3 June 1983 and commissioned on 28 December 1983.
K-278 had a double hull, the inner one being composed of titanium, which gave her an operating depth far greater than that of the best American submarines. The pressure hull was composed of seven compartments with the second and third protected by stronger forward and aft bulkheads creating a "safety zone" in case of an emergency. An escape capsule was fitted in the sail above these compartments to enable the crew to abandon ship in the event of an underwater emergency. Initial Western intelligence estimates of K-278’s speed were based on the assumption that it was powered by a pair of liquid-metal lead-bismuth reactors. When the Soviet Union revealed that the submarine used a single OK-650b-3 conventional pressurized-water reactor, these speed estimates were lowered.
Crew
According to Norman Polmar and Kenneth J. Moore, two Western experts on Soviet submarine design and operations, the Project 685's advanced design included many automated systems which, in turn, allowed for fewer crew members than would be expected for a submarine of its size. The manning table approved by the Soviet Ministry of Defense in 1982 called for a crew of just 57 men. This was later increased to 64: 30 officers, 22 warrant officers, and 12 petty officers and seamen.
Name
In October 1988, K-278 was honored by becoming one of the few Soviet submarines to be given an actual name: Komsomolets (Комсомолец, meaning "a member of the Komsomol"), and her commanding officer, Captain 1st rank Yuriy Zelenskiy was honored for diving to a depth of 1,020 meters (3,350 feet).
Sinking
On 7 April 1989, while under the command of Captain 1st Rank Evgeny Vanin and running submerged at a depth of 335 metres (1,099 ft) about 180 kilometres (100 nmi) southwest of Bear Island (Norway), fire broke out in the engine room due to a short-circuit, and even though watertight doors were shut, the resulting fire spread through bulkhead cable penetrations. The reactor scrammed and propulsion was lost. Electrical problems spread as cables burned through, and control of the boat was threatened. An emergency ballast tank blow was performed and the submarine surfaced eleven minutes after the fire began. Distress calls were made, and most of the crew abandoned ship.
The fire continued to burn, fed by the compressed air system. At 15:15, several hours after the boat surfaced, it sank in 1,680 metres (5,510 ft) of water, about 250 kilometres (135 nmi) SSW off Bear Island. The commanding officer and four others who were still on board entered the escape capsule and ejected it. Only one of the five to reach the surface was able to leave the capsule and survive before it sank again in the rough seas.
Rescue aircraft arrived quickly and dropped small rafts, but most of the men had already died from hypothermia in the 2°C (36°F) water of the Barents Sea. The floating fish factory B-64/10 Aleksey Khlobystov (Алексей Хлобыстов) arrived 81 minutes after K-278 sank, and took aboard 25 survivors and 5 fatalities. In total, 42 of the 69 crewmen died in the accident, including the commanding officer.
Aftermath
In addition to her eight standard torpedoes K-278 was carrying two torpedoes armed with nuclear warheads. Under pressure from Norway, the Soviet Union used deep sea submersibles operated from the oceanographic research ship Keldysh to search for K-278. In June 1989, two months after the sinking, the wreck was located. Soviet officials stated that any possible leaks were insignificant and posed no threat to the environment.
In 1993, Vice Admiral (ret.) Chernov, commander of the submarine group of which the Komsomolets was part, founded the Komsomolets Nuclear Submarine Memorial Society, a charity to support the widows and orphans of his former command. Since then, the Society's charter has expanded to provide assistance to the families of all Soviet and Russian submariners lost at sea. 7 April has become a day of commemoration for all submariners lost at sea.
An expedition in mid-1994 revealed some plutonium leakage from one of the two nuclear torpedoes. On 24 June 1995, Keldysh set out again from St. Petersburg to the Mike datum to seal the hull fractures in Compartment 1 and cover the nuclear warheads, and declared success at the end of a subsequent expedition in July 1996. The jelly sealant was projected to be safe for 20 to 30 years, that is, until 2015 or 2025.
Norwegian authorities from the Marine Environmental Agency and Radiation Agency are taking water and ground samples from the vicinity of the wreck on a yearly basis.
In July 2019, a joint Norwegian-Russian expedition took water samples out of a ventilation pipe and from several meters above, and analyzed them for caesium-137. That pipe had been identified as a leak in several Mir missions up to 1998 and 2007. The activity levels in the six samples out of the pipe ranged between less than (the on-board detection limit of) 10 Bq/l to 100 Bq/l (on July 8) and 800 Bq/l (July 9). No activity could be detected in the free-water samples. Due to dilution, there is no threat to the environment. The Norwegian limit on caesium-137 in food products is 600 Bq/kg. The background activity of caesium-137 in the water body is as low as 0.001 Bq/l. More sensitive measurements of the samples are underway.

Wreck of Soviet-Era Submarine Wreck Leaking High Radiation

It’s the plot of many a science fiction movie or dystopian novel – radiation seeps out from one source or another; thousands get sick or die, and the government pretends nothing is wrong and that the leak isn’t alarming.
That’s what happened at Chernobyl. That’s what happened at Three Mile Island in America in 1979.
Once again, Russia is the source of the problem, as one of its subs sits rotting at the bottom of the Norwegian Sea leaking radiation, after a disaster 30 years ago, during which 42 sailors lost their lives.
Those men were killed by the cold water, or by inhaling poisoned fumes while still stranded. However, 27 sailors did survive, and were rescued by two Russian ships. The sub’s commander had managed to surface briefly and call for help, so authorities were quickly notified of the disaster.
The Komsomolets sank in 1989 when a fire broke out on board. Now, scientists  from Norway’s Institute of Marine Research have examined and filmed the wreck say it is leaking radiation at a level 800,000 times what is considered normal, or to some, acceptable.
The crew took samples from surrounding waters and one of the sub’s pipes to get a better idea of just how dangerous the leak might be.
The lead scientist on the project told bbc.com in mid-July that the levels are “not alarming,” but the sub was equipped with nuclear torpedoes, both with plutonium warheads. It could also fire Granit cruise missiles.
The sub, also known as K-278, lies in very deep water, more than 5,000 feet down, and any leaking radiation is immediately rendered, if not completely harmless, certainly less dangerous because the cold Arctic water dilutes it. Furthermore, because very few fish can survive at that depth or temperature, there is no threat to marine life, scientists say.
Slik ser den sovjetiske atomubåten “Komsomolets” ut i dag – 30 år etter at den sank i Norskehavet. Forskerne fikk de første bildene av vraket sent søndag kveld. 
To get samples from the sub, the research team from Norway sent down a remotely-operated vehicle (ROV) to examine and film the wreck, in order to study it thoroughly in their lab. The team confirmed that the boat was very badly damaged during the fire.
However, Norway’s Radiation and Nuclear Safety Authority (DSA) explained to bbc.com that as soon as the fire began, the pressure water reactor that propelled the sub ceased operating, lessening the danger even further.
This is not the first time the K-278 wreck has been monitored; in fact, on occasion Russia and Norway have teamed up to check whether the wreck is causing more damage.  This time, Russian scientists from the Typhoon Research and Production Association accompanied Norwegian radiation experts and marine scientists.
The mission’s leader, Hilde Elise Heloal, explained to bbc.com, “We took water samples from inside this particular duct because the Russians had documented leaks here both in the 1990s and more recently in 2007. So we weren’t surprised to find high levels here.”
However, she insisted, the radiation is not a threat to anyone, not even marine life. “The levels we detected were clearly above what is normal in the oceans, but they weren’t alarmingly high.”
The question now becomes: what level is too high? What can the ocean withstand before the radiation begins to damage marine life, then cause damage further up the food chain? Sooner or later these disasters do manifest themselves somehow in the human sphere; the only question is when, and how.
Can the wreck be retrieved, perhaps, before it rots completely and the radiation becomes a serious threat? And what will happen to those torpedoes?
Perhaps only scientists can answer these and other pressing questions about the dangers of nuclear materials. But of course, governments must then have the political will to enact whatever solutions science offers. That takes money, but also the willingness to admit their mistakes.  And that is something no government is very good at, regardless of its philosophical leanings.

(Web, Google, Wikipedia, Covert Shores, You Tube)






















lunedì 14 ottobre 2019

Il missile da crociera supersonico Hongda "HD-1", soprannominato il "killer di portaerei"



La China's Guangdong Hongda Blasting Company (Hongda), un'azienda cinese con sede a Guangzhou specializzata in esplosivi industriali e minerari, ha presentato il suo nuovo missile da crociera supersonico HD-1, sviluppato a livello locale e orientato all'esportazione, progettato per missioni di precisione contro obiettivi terrestri e navali.




L'HD-1 è un missile da crociera supersonico a propellente solido, azionato da ramjet, che impiega un booster a razzo a propellente solido a singolo stadio in tandem - al contrario dei booster avvolgenti per ridurre la resistenza aerodinamica - per il lancio del missile e per la fase di accelerazione ad una velocità di avanzamento adatta al funzionamento efficiente del sistema ramjet. La nuova arma supersonica utilizza quattro prese d'aria disposte a "X" attorno al corpo del missile; le superfici di controllo rastremate sono montate sulle prese d'aria vicino agli ugelli.
Secondo le specifiche dell'azienda, l'HD-1 ha un peso di lancio di 2.200 kg e misura 8,3 m con un corpo del missile e un booster di diametro rispettivamente di 375 mm e 650 mm. La velocità è indicata in 2.716-4.321 km/h a seconda del profilo di volo programmato, con il missile in crociera ad altitudini fino a 15.000 m e l'esecuzione di manovre di  sea skimming ad altitudini comprese tra 16 e 32 ft.
La portata massima del missile sarebbe di 290 km, anche se potrebbe essere maggiore, data la propensione degli sviluppatori cinesi di missili a fornire cifre prudenti per soddisfare i controlli delle esportazioni dell'MTCR (Missile Technology Control Regime) internazionale e ampliare la base dei clienti potenziali.
Il missile HD-1 utilizzerebbe una traiettoria alto-bassa combinata con una capacità di penetrazione supersonica e può effettuare un attacco verticale dall'alto, un attacco orizzontale a quota zero sul mare o un attacco pop-up entro un breve raggio dagli obiettivi.
Il missile può essere armato con una gamma di carichi utili distruttivi, compresa una carica perforante da 400 kg ad alto potenziale esplosivo o 240 kg a frammentazione, o testate a grappolo.
Il 15 ottobre, la Guangdong Hongda Mining Company cinese ha effettuato un test del suo nuovo missile da crociera supersonico HD-1 soprannominato "killer di portaerei" in un luogo segreto nel nord della Cina. Secondo una dichiarazione rilasciata dalla società, il test ha verificato i sistemi di lancio, potenza ed i controlli di volo del missile, raggiungendo i valori di progetto in crociera supersonica. L'HD-1 dovrà competere sul mercato della difesa internazionale con il cruise misile indo-russo BrahMos. L'analista militare di Pechino Wei Dongxu ha riferito ai media locali che il motore ramjet a combustibile solido dell'HD-1 richiede meno carburante di altri missili da crociera supersonici presenti sul mercato, il che potrebbe renderlo più leggero, più veloce e meno costoso del BrahMos. 
In una dichiarazione separata, la società produttrice Hongda ha precisato che l'HD-1 può essere adattato ad aerei, navi e veicoli terrestri. 
L'HD-1 ha una portata dichiarata di 290 km, una velocità di 0,75-1,2 km/s, e una crociera ad una altitudine sea-skimming di 4,8 - 9,7 m.
L'investimento totale dell'azienda nel programma HD-1 è stimato in 188 milioni di dollari, secondo Hongda.
Tutti i parametri per il volo di crociera supersonico di progetto del missile HD-1 hanno raggiunto i loro obiettivi stimati. Il lancio di prova mirava a verificare il lancio dell'HD-1, la potenza e i sistemi di controllo del volo. L'azienda non ha rivelato ulteriori dettagli sul test o sul missile.
L'HD-1 utilizza "la tecnologia avanzata dei ramjet a combustibile solido" e sarà disponibile per i clienti internazionali nelle varianti con lancio in aria, a terra e via mare. Come già evidenziato, il ramjet a combustibile solido avanzato dell'HD-1 richiede meno carburante rispetto ai suoi concorrenti, rendendo il missile più leggero in grado di volare sempre più velocemente e più lontano. Il volo di prova ha dimostrato che i componenti principali dell'HD-1 sono ormai maturi, con il suo design aerodinamico, i materiali e la struttura complessiva già sperimentati.
Il programma HD-1 è ancora in una "fase di verifica sperimentale" e l'azienda dovrà ancora ricevere una licenza di esportazione dal governo cinese, dopo di che l'azienda inizierà la produzione in serie. Il motore a tre stadi dell'HD-1 è stato testato per la prima volta in configurazione orizzontale a maggio. Il breve intervallo di tempo tra i test del motore e il primo lancio dell’HD-1 suggerisce il coinvolgimento di un partner internazionale o di un altro appaltatore cinese della difesa.
Gli analisti militari cinesi hanno dichiarato che l'HD-1 è superiore al missile da crociera supersonico BrahMos, una joint venture tra la Defense Research Development Organization dell'India e l'ufficio russo di progettazione missili NPO Mashinostroyeniya. "Il missile BrahMos è un missile da crociera supersonico più costoso e meno utile sviluppato da India e Russia", ha detto Wei Dongxu al Global Times il 16 ottobre. Il Pakistan e i paesi del Medio Oriente potrebbero mostrare interesse, dato il potenziale dell'arma di superare i sistemi antimissili utilizzando la velocità supersonica.
L'industria della difesa cinese sta continuando a lavorare anche su altri missili da crociera supersonici specificamente progettati per l'esportazione, come il CM-302 o il Chaoxun-1 (CX-1), presentati rispettivamente nel 2016 e 2014. Quest'ultimo è disponibile in due varianti: il sistema CX-1A per navi e il sistema CX-1B per veicoli stradali terrestri. A tutt'oggi non è stato identificato alcun cliente internazionale per nessuno dei due tipi di missili.
La relazione annuale del Dipartimento della Difesa degli Stati Uniti (DoD) al Congresso sulla potenza militare cinese non menziona il programma HD-1.
L'azienda sostiene che ci vogliono meno di 5 minuti per prepararsi al lancio, e meno di 10 secondi per lanciarne un secondo. Può colpire con precisione gli obiettivi a terra e in mare, ha detto l'azienda.
Wei Dongxu, un analista militare ha ribadito che la velocità e l'altitudine di volo rendono l'HD-1 molto difficile da intercettare. A suo dire "potrebbe essere un killer di portaerei". "Un attacco di saturazione da parte dell'HD-1 potrebbe annientare un'intera flotta", ha tenuto a precisare Wei.
L'HD-1 può essere lanciato da un veicolo di trasporto terrestre (TEL), che è stato recentemente esposto anche in fiera. Un TEL può essere caricato con 6 missili, che possono essere lanciati con la semplice pressione di un pulsante. Il veicolo adotta un telaio 8x8 su tutte le ruote, il che lo rende molto mobile e può ritirarsi entro 3 minuti dal lancio, assicurando la sua forte capacità di sopravvivenza sul campo di battaglia, ha detto l'azienda.
Oltre alla versione basica, l'azienda ha introdotto anche l'HD-1A, una variante HD-1 che può essere lanciata da aerei da caccia o da bombardieri.
Ci si aspetta che il prezzo del missile cinese sia significativamente più basso rispetto ai prodotti simili presenti sul mercato internazionale delle armi.

ENGLISH

China’s Guangdong Hongda Blasting Company (Hongda), a Guangzhou-based company specialising in mining and industrial explosives, has showcased its new indigenously developed and export-oriented HD-1 supersonic cruise missile designed for precision land attack and anti-ship missions.
The ground-based HD-1 is a solid-propellant, ramjet-powered supersonic cruise missile that employs a tandem single-stage solid-propellant rocket booster – as opposed to wraparound boosters to reduce drag – for missile launch and acceleration to a forward velocity suitable for efficient operation of the ramjet’s intake system, which comprises four air intakes arranged in an ‘X’ configuration around the missile body. Tapered control surfaces are mounted on the intake housings near the nozzles.
According to company specifications, the HD-1 has a 2,200 kg launch weight and measures 8.3 m with a missile body and booster diameter of 375 mm and 650 mm respectively. Speed is quoted as 2,716–4,321 km/h depending on the programmed flight profile, with the missile cruising at altitudes of up to 15,000 m (49,212 ft) and performing sea-skimming manoeuvres at altitudes between 16 and 32 ft.
The missile’s maximum range is stated as 290 km, although Jane’s believes this could be higher given the propensity of Chinese missile developers to provide conservative figures to satisfy international Missile Technology Control Regime (MTCR) export controls and widen their potential customer base.
“The [HD-1] has a high-low trajectory combined with a supersonic manoeuvring penetration capability and it can achieve vertical top attack, sea-skimming horizontal attack, or pop-up attack within a short range of targets,” the company stated.
The missile can be armed with a range of destructive payloads, including unitary 400 kg high-explosive armour-piercing as well as 240 kg blast-fragmentation, blast, and cluster warheads.
On October 15, China’s Guangdong Hongda Mining Company test fired its new HD-1 supersonic cruise missile nicknamed “aircraft carrier killer” in a discreet location in Northern China. According to a statement released by the company, the test verified the missile’s launch, power, and flight control systems, achieving the estimated values for its supersonic cruising flight parameters. The HD-1 is predicted to compete on the international defense market with the Indo-Russian joint venture BrahMos cruise missile. Beijing-based military analyst Wei Dongxu told local media that the HD-1’s solid fuel ramjet requires less fuel than other supersonic cruise missiles on the market, which could make it lighter, faster, and less expensive than the BrahMos. In a separate statement, Hongda claimed the HD-1 can be adapted to aircraft, ships, and ground-based vehicles. Detailed at Airshow China 2018, the HD-1 has a range of up to 290 km, a speed of 0.75-1.2 km/s, and a sea-skimming altitude range of 4.8-9.7 m.

Last 15 October, China-based Guangdong Hongda Blasting Company claimed that it had successfully tested a new supersonic cruise missile not intended for the PLA but for export, as reported by The Diplomat. Guangdong Hongda Blasting Company has not designed and manufactured missiles prior to the HD-1. Total company investment into the HD-1 program has been $188 million, according to Hongda.
Hongda said that “All parameters for the supersonic cruising flight of the HD-1 missile achieved their estimated objectives”. The test launch aimed to check the HD-1’s launch, power and flight control systems. The company did not reveal additional details about the test or the missile.
Hongda claims that the HD-1 uses “advanced solid-fuel ramjet technology” and will be available to international customers in air-, ground-, and sea-launched variants. “The HD-1’s advanced solid fuel ramjet needs less fuel than its competitors, rendering the lighter missile able to fly faster and farther,” Wei Dongxu, a Beijing-based military analyst, was quoted by the Global Times as saying. “The test flight shows that the HD-1’s core components are now mature, with its aerodynamic design, materials and overall structure already proven viable.”
The HD-1 program is still in an “experimental verification stage” and the company will still need to be granted an export license by the Chinese government, after which the company is set to begin serial production. The HD-1’s three-stage engine was reportedly first tested in horizontal configuration in May. The short time interval between engine tests and the HD-1s first launch is noteworthy and may suggest the involvement of an international partner or another Chinese defense contractor.
Chinese military analysts have already touted the HD-1 as superior to the BrahMos supersonic cruise missile, a joint venture between India’s Defense Research Development Organization and Russian rocket design bureau NPO Mashinostroyeniya. “The BrahMos missile is a more expensive, less useful supersonic cruise missile developed by India and Russia,” Wei Dongxu told the Global Times on October 16. “Pakistan and Middle Eastern countries are likely to show interest given the weapon’s potential to break anti-missile systems at supersonic speeds,” he added.
China’s defense industry is also continuing to work on other supersonic cruise missile specifically designed for export, such as the CM-302 or the Chaoxun-1 (CX-1), unveiled in 2016 and 2014 respectively. The latter is available in two variants: the CX-1A ship-borne system and CX-1B road-mobile land-based system. To date, no international customer has been identified for either missile.
China-based Guangdong Hongda Blasting Company announced on October 15 that it has successfully test-launched a new supersonic cruise missile, designated HD-1, intended for export at an unidentified location in northern China. “All parameters for the supersonic cruising flight of the HD-1 missile achieved their estimated objectives,” a company statement reads.


The test launch aimed to verify the HD-1’s launch, power and flight control systems. The company did not reveal additional details about the test or the missile. Hongda claims that the HD-1 uses “advanced solid-fuel ramjet technology” and will be available to international customers in air-, ground-, and sea-launched variants.
“The HD-1’s advanced solid fuel ramjet needs less fuel than its competitors, rendering the lighter missile able to fly faster and farther,” Wei Dongxu, a Beijing-based military analyst, was quoted by the Global Times as saying.”The test flight shows that the HD-1’s core components are now mature, with its aerodynamic design, materials and overall structure already proven viable.”
The HD-1 program is still in an “experimental verification stage” and the company will still need to be granted an export license by the Chinese government, after which the company is set to begin serial production. The HD-1’s three-stage engine was reportedly first tested in horizontal configuration in May. The short time interval between engine tests and the HD-1s first launch is noteworthy and may suggest the involvement of an international partner or another Chinese defense contractor.
Guangdong Hongda Blasting Company is a mining company based in Guangzhou, the capital of South China’s Guangdong Province. The company produces both blasting and military equipment. According to open source information, the company has not designed and manufactured missiles prior to the HD-1. Total company investment into the HD-1 program has been $188 million, according to Hongda.
The U.S. Department of Defense (DoD) annual report to Congress on Chinese military power does not mention the HD-1 program.
Chinese military analysts have already touted the HD-1 as superior to the BrahMos supersonic cruise missile, a joint venture between India’s Defense Research Development Organization and Russian rocket design bureau NPO Mashinostroyeniya. “The BrahMos missile is a more expensive, less useful supersonic cruise missile developed by India and Russia,” Wei Dongxu told the Global Times on October 16. “Pakistan and Middle Eastern countries are likely to show interest given the weapon’s potential to break anti-missile systems at supersonic speeds,” he added.
China’s defense industry is also continuing to work  on other supersonic cruise missile specifically designed for export, such as the CM-302 or the the Chaoxun-1 (CX-1), first revealed 2016 and 2014 respectively. The latter is available in two variants: the CX-1A ship-borne system and CX-1B road-mobile land-based system. To date, no international customer has been identified for either missile.

Chinese firm unveils new cruise missile

Could be cost-effective aircraft carrier killer: expert

Chinese mining company Guangdong Hongda Blasting revealed technical details of its recently tested supersonic cruise missile, HD-1, at the Airshow China 2018 in Zhuhai, South China's Guangdong Province, leading a military expert to believe it could be a cost-efficient aircraft carrier killer and fleet demolisher.
The made-for-export HD-1 debuted at the air show, which runs from Tuesday to Sunday.
The missile uses a solid-propellant ramjet and can reach targets 290 kilometers away at a speed of Mach 2.2 to 3.5, according to the description the company released at the show.
Weighing 2,200 kilograms, the weapon can fly as high as 15 kilometers and as low as 5-10 meters when sea skimming, the description said.
The company claims it takes less than 5 minutes to prepare for a launch, and less than 10 seconds to launch a second one.
It can accurately hit ground and sea targets, the company said.
Wei Dongxu, a Beijing-based military analyst, told the Global Times on Friday that the flight speed and altitudes make the HD-1 very difficult to intercept.
"It could be an awesome aircraft carrier killer," Wei said.
"A saturated attack by the HD-1 can even demolish an entire fleet," he said.
The HD-1 can be launched from a land-based transport erection and launch vehicle (TEL), which was also displayed at the show.
One TEL can be loaded with 6 missiles, which can be fired with a single push of a button. The vehicle adopts an 8x8 all-wheel chassis, making it very mobile and can withdraw within 3 minutes after launch, ensuring its strong battlefield survivability, the company said.
In addition to the basic version, the company also introduced the HD-1A, an HD-1 variant that can be launched in the air by fighter jets and bombers and has similar capabilities.
The HD-1 can also be launched from a ship, the company said.
Capable of being used on multiple platforms is a major selling point of this weapon, Wei noted.
The missile was successfully tested in October. Military experts said it has the potential to rival the BrahMos missile jointly developed by India and Russia.
Wei said that the HD-1's capability has already surpassed early versions of the BrahMos. He expects the price of the Chinese missile to be significantly lower than similar products on the international arms market.
Many foreign military representatives stopped by the HD-1 at the air show. Some of them made inquiries to staff members, the Global Times noted.

(Web, Google, Wikipedia, Janes, You Tube)




La USS John F. Kennedy (CVN-79) sarà la seconda portaerei della classe Gerald R. Ford

La vecchia J.F.K in naftalina.


L'ultimo pezzo del ponte di volo della portaerei statunitense USS John F. Kennedy (CVN-79) è stato installato.

La USS John F. Kennedy (CVN-79) sarà la seconda portaerei della classe Gerald R. Ford, dopo la capoclasse CVN-78. Vi sono poche indiscrezioni intorno a questa unità a parte il nome. Attualmente in costruzione, dovrebbe vedere il mare nel 2020. Userà i nuovi reattori nucleari A1B. Dovrebbe sostituire la USS Nimitz (CVN-68), mentre la USS Gerald R. Ford (CVN-78) sostituirà la USS Enterprise (CVN-65); la USS Nimitz (CVN-68) è stata la prima delle portaerei della classe Nimitz varata nel 1972.
Il 7 dicembre 2007, in occasione del 66° anniversario dell'attacco a Pearl Harbor, il deputato Harry Mitchell (D-AZ) ha proposto di nominare questa nave USS Arizona. Nel 2009, il deputato John Shadegg (R-AZ) ha proposto di nominare la CVN-79 o il successivo CVN-80 Barry M. Goldwater, dopo Barry Goldwater, l'ultimo senatore dell'Arizona. Il 29 maggio 2011, il Dipartimento della Difesa ha annunciato che la nave avrebbe preso il nome di John F. Kennedy (1917-1963), 35° Presidente degli Stati Uniti, che ha prestato servizio nella marina durante la seconda guerra mondiale. Sarà la terza nave della marina che prende il nome dai membri della famiglia Kennedy, e la seconda portaerei succeduta alla USS John F. Kennedy (CV-67), che ha svolto il servizio operativo dal 1968 al 2007.



Costruzione

Il 15 gennaio 2009, la Huntington Ingalls Industries (HII) Northrop Grumman Shipbuilding si aggiudicò un contratto da 374 milioni di dollari per la progettazione e costruzione della John F. Kennedy. Il 30 settembre 2010, Northrop Grumman rivelò che erano in corso i preparativi per iniziare la costruzione. Il 25 febbraio 2011, la Marina effettuò la cerimonia del primo taglio dell'acciaio a Northrop Grumman a Newport News, segnalando l'inizio formale della costruzione di John F. Kennedy che avrebbe dovuto essere completata nel 2018 e quindi al 2020, dopo che il segretario alla Difesa Robert Gates, nel 2009, annunciò che il programma sarebbe passato a un programma quinquennale di costruzione in modo da collocarlo su un "percorso più sostenibile dal punto di vista fiscale". Entro la fine del 2012, si sono verificati altri ritardi nella costruzione, e il Dipartimento della Marina stava studiando di estendere i tempi della Enterprise e della John F. Kennedy di altri due anni, posticipando l'entrata in servizio dell’unità al 2022. Nel settembre 2013, il Government Accountability Office ha raccomandato di posticipare il progetto dettagliato e il contratto di costruzione della John F. Kennedy fino a quando non saranno risolte le carenze programmatiche. Il Dipartimento della Marina e della Difesa ha respinto la raccomandazione. La US NAVY dovrà affrontare sfide tecniche, di progettazione e di costruzione per completare Gerald R. Ford, compresa la produzione di sistemi prima di dimostrare la loro maturità per soddisfare le date di installazione richieste. 
La Gerald R. Ford ha avuto un incremento dei costi del 22% fino a 12,8 miliardi di dollari, e ulteriori aumenti potrebbero seguire a causa delle incertezze che i sistemi tecnologici critici che i costruttori navali devono affrontare sotto il profilo delle prestazioni. Il rischio viene introdotto nel piano della Marina Militare statunitense per condurre test di integrazione dei sistemi chiave contemporaneamente ai test operativi iniziali ed alla valutazione. Un'azione che secondo il GAO potrebbe essere intrapresa per garantire che le acquisizioni di vettori della classe Ford siano supportate con l'analisi costi-benefici delle capacità richieste e dei costi associati.
La chiglia della nave è stata impostata a Newport News, in Virginia, il 22 agosto 2015. Nell'ambito della tradizionale cerimonia di posa della chiglia, le iniziali dello sponsor Caroline Kennedy, figlia del presidente Kennedy e sponsor del precedente John F. Kennedy, sono state saldate nello scafo della nave. Alla fine di giugno 2017 la nave era strutturalmente completa al 50%. Il 28 febbraio 2018, Huntington Ingalls Industries ha annunciato che la divisione Newport News Shipbuilding aveva costruito il 70% delle strutture necessarie per completare John F. Kennedy. Il 30 aprile 2018, Huntington Ingalls Industries ha confermato di essere al 75% strutturalmente eretto e più del 40% del completamento. Alla data di rilascio, 341 delle 447 sezioni di super-lift erano attualmente in opera. Il 3 maggio 2018, il presidente e CEO di Huntington Ingalls, Mike Petters, ha riferito che la portaerei John F. Kennedy sarà varata tre mesi prima del previsto nel quarto trimestre del 2019. Il 30 maggio 2019 è stato installato il ponte e l'isola da 588 tonnellate, completando la nave e posizionando l'ultimo pezzo del puzzle sul ponte. Sotto l'isola il capitano Todd Marzano ha messo le ali e il primo Kennedy da mezzo dollaro che è stato donato da Caroline Kennedy. Accanto a questi Rear Admiral Brian Antonio, Rear Admiral Roy Kelly, e Jennifer Boykin hanno messo le monete coniate con le citazioni del presidente Kennedy e parti del motto della nave. Caroline non potendo essere presente, impartì l'ordine via radio all'operatore della gru di sollevare l'isola per sistemarla sul ponte, schiacciando gli oggetti cerimoniali e mettendoli sulla sovrastruttura delle navi che completano la nave. Il 1° ottobre 2019, l'equipaggio della nave è stato attivato per la prima volta come Pre-Commissioning Unit (PCU) John F. Kennedy (CVN 79) durante una cerimonia a bordo della nave presso la Newport News Shipbuilding. 



La nuova portaerei John F. Kennedy (CVN 79), la più recente portaerei della US Navy, costruita in digitale, dispone ora di un ponte di volo completo dopo che il costruttore navale Huntington Ingalls Industries ha sollevato la sezione di prua finale.
L'aggiunta della sezione superiore di prua presso la divisione Newport News Shipbuilding dell'azienda è una delle ultime unità strutturali in acciaio, nota come superlift, ad essere posizionata su Kennedy. E' stata costruita utilizzando la tecnologia digitale, come le istruzioni di lavoro visive per installare le tubazioni a prua superiore sul piano di assemblaggio finale invece che sulla nave.
Con un peso di 780 tonnellate, la costruzione del superlift ha richiesto 18 mesi.
"Siamo molto soddisfatti dei progressi compiuti su Kennedy mentre ci avviciniamo al battesimo della nave verso la fine dell'anno", ha detto Mike Butler, direttore del programma CVN 79 di Newport News. "La prua superiore è l'ultimo superlift che completa lo scafo primario della nave".
La nuova Kennedy viene assemblata con una strategia di costruzione migliorata che include un maggiore uso di strumenti digitali per costruire super elevatori molto più grandi e più completi a nave completa. Sfruttando le lezioni apprese e i cambiamenti chiave della strategia di costruzione, la Kennedy è sulla buona strada per essere costruita con un numero di ore-uomo notevolmente inferiore rispetto alla prima nave della sua classe, Gerald R. Ford. Il battesimo del vettore è previsto per la fine del 2019.
La CVN 79 J.F.Kennedy è la seconda nave della nuova classe di vettori Gerald R. Ford. La nave principale è stata commissionata nel luglio 2017 come la nave più costosa mai costruita dalla US Navy.



ENGLISH

PCU John F. Kennedy (CVN-79) is the second Gerald R. Ford-class aircraft carrier being built for the United States Navy. The ship is under construction and planned to be commissioned in 2020.

Naming

On 7 December 2007, the 66th anniversary of the Attack on Pearl Harbor, Congressman Harry Mitchell (D-AZ) proposed naming this ship USS Arizona. In 2009, Congressman John Shadegg (R-AZ) proposed naming either CVN-79 or the subsequent CVN-80 Barry M. Goldwater, after Barry Goldwater, the late senator from Arizona. On 29 May 2011, the Department of Defense announced that the ship would be named for John F. Kennedy (1917–1963), the 35th President of the United States, who served in the navy during World War II She will be the third navy ship named after members of the Kennedy family, and the second aircraft carrier named John F. Kennedy, succeeding USS John F. Kennedy (CV-67), which served from 1968 to 2007.

Construction

On 15 January 2009, Huntington Ingalls Industries (HII) Northrop Grumman Shipbuilding was awarded a $374 million contract for design work and construction preparation for John F. Kennedy. On 30 September 2010, Northrop Grumman announced that preparations were under way to begin construction. On 25 February 2011, the Navy conducted the First Cut of Steel ceremony at Northrop Grumman in Newport News, signalling the formal start of construction for John F. Kennedy.
John F. Kennedy was originally planned to be completed in 2018. This was extended to 2020 after Secretary of Defense Robert Gates announced in 2009 that the program would shift to a five-year building program so as to place it on a "more fiscally sustainable path". By late 2012, delays had occurred in construction, and the Navy Department was investigating extending the construction time of both Enterprise and John F. Kennedy by an additional two years which could delay the carrier's entry into service until 2022. In September 2013, the Government Accountability Office recommended delaying the detail design and construction contract for John F. Kennedy until programmatic shortfalls are sorted out. The Navy and Defense Department have rejected the recommendation. The Navy faces technical, design, and construction challenges to completing Gerald R. Ford, including producing systems prior to demonstrating their maturity to meet required installation dates. Gerald R. Ford had costs increase by 22% to $12.8 billion, and additional increases could follow due to uncertainties facing critical technology systems and shipbuilder under performance. Risk is introduced in the Navy's plan to conduct integration testing of key systems at the same time as initial operational test and evaluation. One action the GAO says could be taken to ensure Ford-class carrier acquisitions are supported is conducting a cost-benefit analysis of required capabilities and associated costs.
The ship's keel was laid in Newport News, Virginia on 22 August 2015. As part of the traditional keel laying ceremony, the initials of ship sponsor Caroline Kennedy, daughter of President Kennedy and the sponsor of the previous John F. Kennedy, were welded into the ship's hull. As of late June 2017 the ship was 50% structurally complete. On 28 February 2018, Huntington Ingalls Industries announced that its Newport News Shipbuilding division had built 70% of the structures necessary to complete John F. Kennedy. On 30 April 2018, Huntington Ingalls Industries announced that she was "75 percent structurally erected and more than 40 percent complete." As of the release date, 341 of the 447 super-lift sections were currently in place. The ship is scheduled to be christened in the latter half of 2019, commissioned in 2020, On 3 May 2018 Huntington Ingalls President & CEO Mike Petters reported that John F. Kennedy was tracking to be launched three months ahead of schedule in the fourth quarter of 2019. On 30 May 2019 the 588 ton bridge and island was installed completing the ship and placing the final piece of the puzzle on deck. Under the island Captain Todd Marzano placed his wings and the first Kennedy half dollar which was donated by Caroline Kennedy was put in place. Next to these Rear Admiral Brian Antonio, Rear Admiral Roy Kelly, and Jennifer Boykin placed coins each embossed with quotes from President Kennedy and parts of the ships motto. Caroline could not be present, so she had Lee Murphy give the order via radio for the crane operator to lift the island and set it down on the deck crushing the ceremonial items and entombing them in the ships superstructure completing the ship.
On October 1st, 2019, the ship's crew was activated for the first time as Pre-Commissioning Unit (PCU) John F. Kennedy (CVN 79) at a ceremony aboard the vessel at Newport News Shipbuilding. 

Watch as the last piece of a US aircraf carrier’s flight deck is installed

The US Navy’s newest, digitally-built, aircraft carrier John F. Kennedy (CVN 79) now has a complete flight deck after shipbuilder Huntington Ingalls Industries lifted the final bow section into place.
The addition of the upper bow section at the company’s Newport News Shipbuilding division is one of the last steel structural units, known as a superlift, to be placed on Kennedy. It was built using digital technology, such as visual work instructions to install piping in the upper bow on the final assembly platen instead of on the ship.
Weighing 780 tons, the superlift took 18 months to build.
“We are very pleased with the progress being made on Kennedy as we inch closer to christening the ship later this year,” said Mike Butler, Newport News’ CVN 79 program director.
“The upper bow is the last superlift that completes the ship’s primary hull.”
Kennedy is being built with an improved build strategy that includes the increased use of digital tools to build superlifts that are much larger and more complete at ship erect than on prior carriers. Leveraging lessons learned and key build strategy changes, Kennedy is on track to be built with considerably fewer man-hours than the first ship in its class, Gerald R. Ford.
The carrier’s christening is planned for late 2019.
Kennedy is the second ship in the new class of Gerald R. Ford class of carriers. The lead ship was commissioned in July 2017 as the US Navy’s most expensive ship ever built.

(Web, Google, Wikipedia, Navaltoday, You Tube)































domenica 13 ottobre 2019

Il laser di potenza MBDA Deutschland per l'impiego su diverse piattaforme terrestri e marittime



MBDA Deutschland ha sviluppato un effettore laser rotabile progettato per l'impiego su diverse piattaforme terrestri e marittime ed è integrato con la piattaforma tramite interfacce standardizzate. Il nuovo sistema d'arma è particolarmente adatto alla difesa contro bersagli altamente agili come UAV, razzi e proiettili da mortaio.
Con un sistema di guida del fascio che copre un intero emisfero, il sistema può acquisire obiettivi in un arco operativo a 360 gradi, tracciare e poi distruggere obiettivi specifici utilizzando il potente raggio laser dell'arma.
I sistemi di tracciamento integrati garantiscono un punto di tenuta stabile sul bersaglio, e quindi un rapido coinvolgimento del bersaglio. I brevi tempi di ingaggio rendono questo effettore in grado di difendersi da attacchi a sciame come gli UAV che attaccano da diverse direzioni. Le ottiche a specchio utilizzate sono in grado di sfruttare livelli di potenza laser superiori a quelli attualmente disponibili.
Negli ultimi anni MBDA Deutschland ha investito notevoli risorse proprie nello sviluppo delle tecnologie laser. Il nuovo laser effector è un ulteriore importante passo avanti verso un sistema utilizzabile a livello operativo.
MBDA Deutschland si occupa da diversi anni di effetti laser. L'azienda ha testato con successo gli effetti laser in prove multiple su bersagli trasportati dall'aria, UAV e altri bersagli.



ENGLISH

MBDA Deutschland has developed a rotatable laser effector designed to deploy on various land and sea-based platforms and is integrated with the platform via standardised interfaces. The company is displaying the new system this week at the ILA Berlin Air Show. The new weapon system is especially suitable for defence against highly agile targets such as UAVs, rockets and mortar shells.
With a beam guidance system covering a full hemisphere, the system can acquire targets in a 360-degree operational arc, track and then destroy specific targets using the weapon’s powerful laser beam.
The integrated tracking systems ensure a stable holding point on the target, and thus rapid target engagement. Short engagement times also make this effector capable of defending against swarming attacks such as UAVs attacking from different directions. The mirror optics used are capable of harnessing higher laser power levels than those currently available today.
“In recent years, MBDA Deutschland has invested a significant amount of its own resources into the development of laser technologies,” states Peter Heilmeier, MBDA Deutschland’s Head of Sales and Business Development. He indicated that the new laser effector is a further important step towards an operationally deployable system.
MBDA Deutschland has been working on laser effectors for several years. The company has successfully tested laser effectors in multiple trials against airborne targets such as shells and UAVs as well as other targets.



MBDA has more than 30 years’ experience working on high energy laser activities, conducting extensive research and development on a variety of programmes and related activities across Europe.
Through its extensive experience in air defence system design and development, MBDA can provide full system solutions complementing conventional weapon systems with laser effectors. MBDA’s competencies as a system integrator cover the entirety of the product life cycle from design to integration and customer support. Learn more…
Mini drones represent a new type of threat demanding the consideration of new solutions, beyond conventional effectors. Recent incidents have seen mini drones disrupting high profile events and flying over protected locations. Highly precise and scalable laser weapon systems could protect major events and critical infrastructures and close a current capability gap.
MBDA’s successes in technology have led to the development of a high energy laser weapon demonstrator. Since 2008, MBDA Deutschland has developed and successfully tested a high energy laser weapon demonstrator against a broad range of threats, including rapidly manoeuvre, highly dynamic targets such as mini-UAVs.  Functionality of the full operation of a laser weapon system has been proven in a series demonstrations and tests from target acquisition, engagement and destruction at distances of up to 2km.
In its system studies, MBDA is examining laser-armament options for naval and air applications as well as ground-based mobile laser effector concepts with capacities in excess of 100kW, 360-degree coverage and open system architecture for close and intermediate-range protection against micro UAVs and RAM (rocket and mortar) targets.
MBDA can provide full system solutions complementing conventional weapon systems with laser effectors.

(Web, Google, Wikipedia, Defense-update, You Tube)