lunedì 1 novembre 2021

Presso lo stabilimento del Muggiano (La Spezia), è stata consegnata alla Marina del Qatar la prima corvetta classe AL ZUBARAH


AL ZUBARAH CLASS

La classe Doha (ora classe Al Zubarah) è una classe di corvette costruite da Fincantieri per la Marina Militare del Qatar.




Sviluppo

Fincantieri presentò per la prima volta le corvette multiruolo di difesa aerea per la Qatari Emiri Navy durante la fiera espositiva DIMDEX 2018. Nell'agosto 2017, il Qatar aveva annunciato ufficialmente l'ordine delle quattro navi della classe dopo la firma del contratto nel giugno 2016.




La corvetta di classe "Al Zubarah" è progettata coerentemente con le regole RINAMIL ed è un tipo di nave flessibile in grado di svolgere diversi tipi di compiti, dalla sorveglianza con capacità di salvataggio in mare all'essere una nave da combattimento. 
E’ lunga circa 107 metri, larga 14,70 metri, con una velocità massima di 28 nodi. E’ dotata di un impianto combinato diesel e turbodiesel (CODAD) e ospita a bordo 112 persone, di cui 98 dell'equipaggio.




La nave sarà in grado di mettere a mare imbarcazioni ad alta velocità come RHIB (Rigid Hull Inflatable Boat) tramite gru laterali o una rampa di alaggio situata all'estrema poppa. 




Il ponte di volo e l'hangar sono dimensionati per ospitare un elicottero NH90.





Nel luglio 2018 si è svolta presso il cantiere del Muggiano a La Spezia la cerimonia di taglio dell'acciaio della prima corvetta classe “Doha” ordinata a Fincantieri dal Ministero della Difesa del Qatar nell'ambito del programma nazionale di acquisizioni navali, alla presenza del Vice Presidente del Consiglio dei Ministri Il Ministro e Ministro di Stato del Qatar per gli Affari della Difesa, Sua Eccellenza Khalid Bin Mohamed Al Attiyah e il Ministro della Difesa italiano, Elisabetta Trenta, accolti dal Presidente e dall'Amministratore Delegato di Fincantieri Giampiero Massolo e Giuseppe Bono.
Nell'aggiudicazione di questo prestigioso contratto, Fincantieri prevalse sugli altri concorrenti grazie a un progetto riconosciuto come il più avanzato e innovativo di tutti. La presenza dei due Ministri ha testimoniato il valore internazionale acquisito da Fincantieri, che, grazie all'esperienza maturata nella costruzione di navi ad alto contenuto tecnologico, è oggi un Gruppo di riferimento anche in campo navale.
Il contratto, pari a Fincantieri a ca. 4 miliardi di €, prevede la fornitura di sette navi di superficie, di cui:
  • quattro corvette, 
  • una nave anfibia (LPD - Landing Platform Dock), 
  • e due pattugliatori (OPV - Offshore Patrol Vessel) 
  • oltre a servizi di supporto in Qatar per ulteriori 10 anni dopo la consegna delle navi. 

Tutte le unità saranno interamente costruite nei cantieri italiani Fincantieri a partire dal 2018.  Alla cerimonia erano presenti, tra gli altri, il Maggiore Generale di Stato Maggiore Abdullah Bin Hassan Al Sulaiti, Comandante delle Forze Navali degli Emirati Arabi Uniti, e il Capo della Marina Militare Italiana, Ammiraglio Valter Girardelli.

Il varo tecnico della corvetta “Damsah” e la posa della chiglia della “Sumaysimah”, rispettivamente la seconda e la quarta della classe Al Zubarah Corvette commissionate a Fincantieri dal Ministero della Difesa del Qatar nell'ambito del programma nazionale di acquisizioni navali con consegne rispettivamente nel 2022 e 2023, avvenuta il 13 febbraio 2021 presso il cantiere di Muggiano (La Spezia). Alla cerimonia, svoltasi in formato ristretto e nel pieno rispetto delle prescrizioni anti-contagio, hanno partecipato il Maggiore Generale Mubarak Mohammed AK Al-Khayarin, Vice Capo di Stato Maggiore per gli Affari Amministrativi e Logistici delle Forze Armate del Qatar, il Contrammiraglio Giorgio Lazio, italiano Comandante Marittimo della Marina – Area Nord, e Giuseppe Giordo, Direttore Generale della Divisione Navi Navali di Fincantieri.

Le nuove unità sono in grado di manovrare imbarcazioni ad alta velocità come gommoni a scafo rigido con l'ausilio di gru laterali e rampe di alaggio. Tutti e quattro i membri della classe Doha fungeranno da spina dorsale della Marina emiratina del Qatar.

La nave è progettata coerentemente con le regole RINAMIL.

È un tipo di nave flessibile in grado di svolgere una serie di compiti, dalla sorveglianza con capacità di salvataggio in mare all'essere una nave da combattimento. Il ponte di volo e l'hangar sono dimensionati per ospitare un elicottero NH90.

In data 28 ottobre 2021, presso lo stabilimento di Muggiano (La Spezia), è stata consegnata alla Marina del Qatar la prima corvetta pesante della classe AL ZUBARAH. Il costruttore navale italiano Fincantieri ha consegnato la prima corvetta di classe Al Zubarah di quattro navi ordinate dal Ministero della Difesa del Qatar nell'ambito del programma di acquisizione navale nazionale. La cerimonia di consegna si è svolta presso il cantiere navale di Muggiano (La Spezia), in Italia, il 28 ottobre. Le nuove  corvette di classe Al Zubarah sono  dotate di un sistema di propulsione combinato diesel e diesel (CODAD) e potranno raggiungere una velocità massima di 28 nodi ospitando a bordo 112 persone.
Oltre a quattro corvette, l'accordo include la costruzione di due navi di tipo OPV/FACM basate sulle navi di classe 2 Falaj. Le cerimonie di varo della seconda e della terza nave si sono svolte rispettivamente a febbraio e settembre di quest'anno.
La corvetta “Al Zubarah”, la prima delle quattro unità ordinate dal Ministero della Difesa del Qatar nell'ambito del programma nazionale di acquisizioni navali, è stata consegnata presso il cantiere navale di Muggiano (La Spezia) alla presenza della Senatrice Stefania Pucciarelli, Sottosegretario di Stato per la Difesa. Alla cerimonia hanno partecipato il Generale a tre stelle Salem Hamad Al Nabit, Capo di Stato Maggiore delle Forze Armate del Qatar, il Maggiore Generale di Stato Maggiore (Mare) Abdullah Hassan Al-Sulaiti, Comandante delle Forze Navali Emiri del Qatar, il Vice Ammiraglio Aurelio De Carolis, Vice Capo delle Staff della Marina Militare Italiana, e Giuseppe Giordo, Direttore Generale Divisione Navi Navali di Fincantieri.

(SVPPBELLUM, RID, Web, Google, Wikipedia, Fincantieri, Dott. G:Arra, Navalnews, You Tube)






































 

L'IBM 610 Auto-Point Computer è stato uno dei primi personal computer


L'IBM 610 Auto-Point Computer è stato uno dei primi personal computer, nel senso di un computer utilizzato da una persona la cui precedente esperienza con l'informatica era stata solo con calcolatrici da tavolo. 


Era controllato in modo interattivo da una tastiera. Il principale progettista di questa macchina era John Lentz, come parte del suo lavoro per il Watson Lab della Columbia University.
L'IBM 610 fu introdotto nel 1957. Era abbastanza piccolo da stare facilmente in un ufficio; pesava circa 800 libbre (360 kg). Era stato progettato per essere utilizzato in un normale ufficio, senza particolari requisiti elettrici o di condizionamento. Utilizzava tubi a vuoto, un tamburo magnetico e lettori e perforatori di nastri di carta perforati. L'input proveniva da una tastiera e l'output era su una macchina da scrivere elettrica IBM, a diciotto caratteri al secondo. 
È stato uno dei primi (se non il primo) computer ad essere controllato da una tastiera. Il termine "punto automatico" si riferiva alla capacità di regolare automaticamente il punto decimale nell'aritmetica a virgola mobile.
Il suo prezzo era di $ 55.000, oppure poteva essere affittato per $ 1150 al mese ($ 460 accademici). Sono state realizzate un totale di 180 unità. Era un computer lento e limitato, ed è stato generalmente sostituito dall'IBM 1620.
L' IBM 610 Auto-Point Computer venne progettato in un attico del Watson Lab della Columbia University da John Lentz tra il 1948 e il 1954 come Personal Automatic Computer (PAC) e annunciato dalla IBM come 610 Auto-Point nel 1957. L'IBM 610 è stato il primo personal computer, nel senso che è stato il primo computer destinato all'uso da parte di una sola persona (ad esempio in un ufficio) e controllato da una tastiera. Il grande armadio conteneva un tamburo magnetico, i circuiti di controllo aritmetico, un pannello di controllo e lettori di nastri di carta separati e punzoni per programma e dati (secondo un ex utente, Russ Jensen, "La macchina veniva programmata da un nastro di carta perforata che si duplicava per eseguire passaggi aggiuntivi attraverso il codice". La macchina da scrivere elettrica IBM stampava l'output a 18 caratteri al secondo; l'altro dispositivo era la tastiera dell'operatore per il controllo e l'immissione dei dati, che incorporava un piccolo tubo catodico (due pollici, 32×10 pixel) che poteva visualizzare il contenuto di qualsiasi registro. Un "registro" è una qualsiasi delle 84 posizioni del tamburo (31 cifre più il segno). Il pannello di controllo forniva un ulteriore controllo di programmazione (ad es. per la creazione di subroutine, tipicamente per funzioni trigonometriche o altre funzioni matematiche). Prezzo: $ 55.000,00 (o noleggio a $ 1150 al mese, $ 460 accademici). Furono prodotte 180 unità.
Lentz disse del 610: "Un nuovo approccio alla programmazione e al controllo del computer, utilizzato nel computer IBM 610, consente la soluzione di problemi complessi da parte di un operatore la cui unica esperienza precedente con l'informatica è stata la calcolatrice da tavolo. La struttura di comando della macchina è progettata in modo che l'operatore possa in ogni momento comunicare con il computer tramite una serie di brevi istruzioni di tipo frase che assomigliano molto ai passaggi della soluzione aritmetica manuale. Un tipo di operazione decimale mobile chiamata modalità 'auto-point' consente l'immissione di dati in locazioni di memoria con posizionamento automatico del punto decimale, senza programmazione elaborata. Il punto decimale viene riposizionato automaticamente durante il calcolo successivo".
Gli utenti hanno confermato che la macchina era economica, affidabile (tempo di attività del 95% tipico), facile da programmare (era uno dei primi, se non il primo, computer programmabile simbolicamente da una tastiera), gestita in virgola mobile aritmetica naturalmente, e non richiedeva aria condizionata o alimentazione speciale. Alcuni, tuttavia, l’hanno criticata per la sua velocità di esecuzione (ad esempio 20 secondi per calcolare un seno). Ma, come dice Brennan, "concettualmente molto in anticipo sui tempi, il 610 prevedeva una comunicazione diretta 'on-line' tra individuo e computer". Quando il 610 fu dismesso (era tecnologicamente obsoleto fin dall'inizio, a causa del lungo ritardo nell'immissione sul mercato), la maggior parte dei siti lo sostituì con un 1620.
IBM produsse diversi altri personal computer negli anni successivi, tra cui il 5100 e il CS-9000 prima di rilasciare finalmente il suo PC che ha conquistato il mondo nel 1981 (il CS-9000 era pronto prima del PC ma annunciato dopo).

Brennan affermò che il primo prototipo 610 era stato "completato al Watson Lab nel 1948". Grosch  disse: "Il 610 di Lentz non esisteva nemmeno in prototipo quando me ne andai nel 1951 - se 'sotto copertura', l'involucro era molto più tardi". Secondo Bashe, il primo modello ingegneristico dell'Auto-Point Computer era già operativo nel 1954, ma il rilascio fu ritardato dal lancio da parte dell'IBM dei suoi computer serie 650 e 700. Il 610 fu il penultimo computer munito di tubo a vuoto della IBM.

In alcuni casi il Bendix G-15 (1956) delle dimensioni di un frigorifero venne chiamato il "primo personal computer", ma il 610 era in funzione almeno due anni prima. In ogni caso il 610 era stato destinato ad essere personale, mentre il G-15 era destinato ad essere poco costoso) (Un altro dispositivo. A volte chiamato il primo personal computer è il Simon - anche associata con la Columbia University - ma fu soltanto un limitato dispositivo dimostrativo di funzioni.






Per ragioni perse nel tempo, la costruzione dei primi prototipi era stata affidata a Burroughs/ElectroData a Pasadena, in California, che aveva anche contribuito alla progettazione. 

Nel maggio 2004, John C. Alrich, che faceva parte del team di progettazione 610 a Burroughs, e aveva lavorato con Lentz per 12-18 mesi a Pasadena dichiarò a proposito del progetto:

“””Facevo parte del team di progettazione di Burroughs. In effetti, avevo un brevetto su parte del design del tamburo. John era davvero l'architetto, ma Burroughs, Pasadena, svolse un ruolo non trascurabile nella progettazione e costruzione di molti dei prototipi. Gli unici dati stampati che ho da quel progetto sono il mio brevetto che è stato compilato il 14/4/55 e rilasciato il 17/9/57, quindi l'aprile '55 doveva essere nel mezzo della nostra fase di progettazione a Pasadena. Non ho altri documenti. Ricordo che Herb Grosch usciva e guardava la macchina quando era a buon punto; John, con Jack Palmer, anche lui di IBM, era stato sveglio metà della notte per far funzionare la funzione radice quadrata per questa demo; il 610 è stato il primo prodotto IBM con funzionalità radice quadrata incorporata. Non ricordo se facevamo ancora parte di Burroughs o ancora una sussidiaria della Consolidated Electrodynamics Corporation, chiamata ElectroData. CEC ha prodotto spettrometri di massa e il nostro primo computer è stato progettato per invertire grandi matrici utilizzate nell'analisi dei composti. Il tizio che ha spinto CEC nel business dei computer è stato Clifford Berry, che ha progettato spettrometri di massa e che - sei pronto per questo - ha ottenuto il suo dottorato di ricerca sotto Atanasoff prima della seconda guerra mondiale e ha lavorato con Atanasoff sul suo primo computer lì all'Università! Cliff non ha funzionato sul nostro primo computer, chiamato Datatron 201, ma ha continuato con la progettazione di spettrometri di massa. Penso che Cliff sia morto alla fine degli anni Cinquanta in tenera età. Il progetto di John era radicalmente diverso dal progetto CEC/von Neumann che conoscevo in quanto il circuito era dinamico piuttosto che statico; cioè ha usato multivibratori a corsa libera piuttosto che flip-flop statici per la sua logica. Non pensava che i ff fossero stabili! Posso approfondire di più in seguito. L'altra cosa strana nel design (almeno per me) era che il 610 era essenzialmente una macchina di Turing; cioè, in linea di principio, aveva una capacità infinita per i dati di input e per i dati di output intermedi e finali. Il mezzo, ovviamente, era nastro di carta perforato, entrambi funzionanti, se ricordo bene, a 18 caratteri/secondo! Il piccolo tamburo placcato è stato utilizzato anche per memorizzare i risultati intermedi. Anche John ha utilizzato molti relè a filo nel suo progetto. Perché sono stato assegnato al progetto da LP Robinson (Robbie), non lo saprò mai. Non ero una persona di circuito anche se, dal 1951 al 1952, ho lavorato con un brillante matematico, Ernst Selmer, che era il matematico n. così. Quindi conoscevo abbastanza bene il design della logica (ho progettato il controllo a virgola mobile per Datatron nel 1957, il pezzo di design più soddisfacente che ho fatto in una carriera di 40 anni). È stato interessante leggere che IBM ha realizzato 180 unità, di cui ho solo due commenti: A causa del circuito dinamico, se l'orologio perdeva la sincronizzazione, non si poteva tenere un'immagine fissa su uno schermo dell'oscilloscopio per eseguire il debug. Quando ciò accadde, Lentz fu una delle poche persone al mondo in grado di analizzare il problema e risolverlo. Mi chiedo come sia gestito il Field Service di IBM? Ripensando al 610, lo trovo ancora un enigma. C'erano molte idee intelligenti, per lo più di John, ma penso che John sia salito sul ramo sbagliato dell'albero dell'evoluzione del computer. In linea di principio, la sua macchina poteva risolvere qualsiasi problema matematico che potesse essere risolto in un tempo finito, ma utilizzando alberi di relè e I/O su nastro di carta, la velocità di esecuzione era intollerabilmente lenta, anche per gli standard del 1955”””.

Una figura mostra il computer aperto per rivelare i suoi interni. L'armadio a sinistra contiene l'unità di aritmetica elettronica con la sua unità di memoria a tamburo magnetico e controlli elettromeccanici, con ingresso/uscita nastro di carta in alto. Sulla scrivania c'è una macchina da scrivere elettrica per la stampa e una "tastiera di controllo manuale che fornisce una visualizzazione a tubo catodico in forma codificata del contenuto di qualsiasi registro macchina desiderato" (figura al centro). Il sistema completo pesa 750 libbre e assorbe meno di 20 ampere da un singolo circuito da 120 volt. Il pannello di controllo (figura in basso) può essere utilizzato per programmare funzioni di uso comune come seno o coseno, in modo che non debbano essere lette ripetutamente dal nastro di controllo.

John Alrich ha commentato nel giugno 2004: 

"Per molti versi il 610 era unico o quasi unico per il suo giorno o per qualsiasi altro giorno. Un attributo in particolare era il metodo di codifica numerica. Se ricordo bene, ogni parola era lunga quindici cifre usando l'impulso codifica della posizione. Cioè, ciascuna delle quindici cifre era lunga dodici slot seriali. A seconda di dove un impulso o gli impulsi apparivano all'interno di ciascuna cifra determinavano il valore di quella cifra, il segno della parola e la posizione decimale. Pertanto il display seriale era piuttosto semplice — un CRT con un solo raggio modulato Un reticolo trasparente inciso, con 180 piccole fessure, posto davanti al CRT permetteva all'utente di leggere immediatamente il valore numerico della parola visualizzata.
In questo modo la somma è stata determinata entro una parola dal giro del tamburo. La sottrazione potrebbe essere eseguita in modo simile sostituendo il riporto con un prestito; la moltiplicazione, la divisione e la radice quadrata erano, ovviamente, più complesse."
John riferisce che le persone a Burroughs chiamavano il 610 il CADET ("Non posso aggiungere, non ci prova nemmeno"), lo stesso termine usato dagli IBMer per il 1620.

LA DIFFUSIONE IN AMBITO MILITARE E ACCADEMICO

L'IBM 610 ha visto un uso diffuso in ambito militare e accademico per applicazioni scientifiche. Alcune foto allegate provengono dall'US Army Ballistics Research Lab (BRL), Aberdeen Proving Ground, Maryland, circa 1961, dove il 610 è stato utilizzato per calcoli di trasferimento di calore, analisi di dati spettrometrici di massa, valutazioni di formule, calcolo dell'aeroelasticità, analisi delle sollecitazioni, flutter e analisi delle vibrazioni, riduzione dei dati, progettazione di autostrade, progettazione di ponti, problemi di rilevamento, aritmetica delle matrici, analisi di correlazione e regressione, previsioni di vendita, calcoli attuariali, analisi della varianza, adattamento di curve, progettazione sperimentale e molte altre applicazioni. Le installazioni includevano BRL, il comando di ricerca sui trasporti dell'esercito americano; l'Accademia Navale degli Stati Uniti; il Laboratorio QE del deposito di munizioni navali degli Stati Uniti; Gamma di missili di White Sands; l'Autorità della Valle del Tennessee; DuPont; Generale Pneumatici e Gomma; aereo Lockheed; Carlton College; l'Università di Louisville; l'Università del Rhode Island; il Università di Waterloo, Worcester Polytechic Institute e, naturalmente, Columbia University, dove è stato utilizzato per lavori di chimica fisica fino al 1965 circa. I siti militari spesso ne avevano 3 o 4 ciascuno; potrebbe essere messo su un camion e portato sul campo, e potrebbe anche essere messo su un aereo.

(SVPPBELLUM, Web, Google, Columbia.edu, Wikipedia, You Tube)














 

Nuovo contratto alla General Dynamics per i sottomarini Columbia (SSBN-826), SSBN-X Future Follow-on Submarine


La General Dynamics Electric Boat Corp., Groton, Connecticut, si è aggiudicata una modifica ad un contratto precedentemente aggiudicato per il supporto fino al 2028 del cantiere all'intera flotta di nuovi sottomarini lancia missilistici balistici classe Columbia (SSBN).




La modifica del contratto fornisce anche supporto continuo per la produzione di componenti del cantiere navale, e della manodopera a sostegno di tubi missilistici completamente attrezzati e allo sviluppo ed espansione della base industriale sottomarina come parte del piano aziendale integrato e dell'approvvigionamento di materiale multi-programma a supporto degli SSBN Columbia.
Sono inclusi ulteriori investimenti in unità di backup di produzione equipaggiamento continuo di tubi missilistici. I lavori verranno eseguiti a Groton, Connecticut (97,3%); e Newport News, Virginia (2,7%) e dovrebbero essere completati nel 2031.
Il sottomarino missilistico balistico classe Columbia (SSBN-826) della US Navy comprende una classe di 12 nuovi SSBN per sostituire l'attuale forza della Marina di 14 vecchi SSBN classe Ohio. Dal 2013, la US NAVY ha costantemente identificato il programma Columbia come il programma di massima priorità della Marina degli Stati Uniti. La Marina degli Stati Uniti ha acquistato la prima unità sottomarina nell'anno fiscale 2021 e vuole acquisire la seconda nell'esercizio 2024.
La Marina degli Stati Uniti gestisce tre tipologie di sottomarini: 
  • sottomarini d'attacco a propulsione nucleare (SSN), 
  • sottomarini missilistici da crociera a propulsione nucleare (SSGN) 
  • e sottomarini missilistici balistici a propulsione nucleare (SSBN). 




Gli SSBN svolgono una missione specializzata di deterrenza nucleare strategica e sono armati con missili balistici lanciati da sottomarini (SLBM), grandi missili a lungo raggio armati con testate nucleari multiple. Gli SSBN lanciano i loro SLBM da tubi di lancio verticali di grande diametro situati nella sezione centrale dell’unità. 
La missione fondamentale degli SSBN è quella di rimanere nascosti in mare con i loro SLBM, in modo da dissuadere un attacco nucleare contro il territorio degli Stati Uniti da parte di un paese ostile dimostrando che gli Stati Uniti hanno assicurata una capacità di secondo colpo.

I sottomarini classe Columbia sono sottomarini missilistici balistici a propulsione nucleare che avranno:
  • una lunghezza di 171 m, 
  • Una larghezza di 13 m,
  • e un dislocamento di 20.810 tonn,
  • il reattore nucleare sarà utilizzato per generare energia, che sarà convertita in energia elettrica per alimentare il motore elettrico di propulsione,
  • potrà avere una autonomia operativa illimitata grazie all'utilizzo di un reattore nucleare,
  • potranno raggiungere una velocità massima dichiarata di oltre 20 nodi (37 km/h). 


Il design della classe Columbia include 16 tubi SLBM, rispetto ai 24 tubi SLBM (20 sono ora utilizzati sugli SSBN classe Ohio). Sebbene il design della classe Columbia abbia meno tubi SLBM rispetto al design della classe Ohio, è più grande del design della classe Ohio in termini di dislocamento in immersione. Il progetto di classe Columbia, come il progetto Ohio prima di esso, sarà il più grande sottomarino mai costruito dagli Stati Uniti.
Il sottomarino di classe Columbia, precedentemente noto come Ohio Replacement Submarine e SSBN-X Future Follow-on Submarine, è una nuova classe di sottomarini nucleari progettati per sostituire i sottomarini missilistici balistici di classe Ohio nella Marina degli Stati Uniti. Il primo sottomarino ha iniziato ufficialmente la costruzione il 1 ottobre 2020,  ed entrerà in servizio nel 2031. 
Le unità OHIO verranno dismesse, una all'anno, a partire dal 2027. I Columbia assumeranno il ruolo di presenza sottomarino nella forza nucleare strategica degli Stati Uniti. 
La Electric Boat sta progettando i sottomarini sostitutivi dell'Ohio con l'aiuto di Newport News Shipbuilding. Sono previsti un totale di 12 sottomarini, con la costruzione della unità principale prevista per iniziare nel 2021. Ogni sottomarino avrà 16 tubi missilistici, ciascuno dei quali trasporta un missile Trident II D5LE. 
Negli studi per determinare quanti sottomarini sarebbero necessari per supportare la forza nucleare strategica degli Stati Uniti, la US NAVY ha esaminato il numero di missili necessari per essere in mare e in stazione in un dato momento, il numero di missili che ogni sottomarino dovrebbe essere armato e con la probabilità che un sottomarino non venga scoperto dal nemico e sia in grado di lanciare i suoi missili. È stato anche preso in considerazione il modo in cui il programma di manutenzione di ciascun sottomarino influenzerà la disponibilità dell'imbarcazione a essere schierata in missione. Gli studi sulla riduzione dei costi hanno esplorato le possibilità di progettazione e costruzione, inclusa l'aggiunta di tubi missilistici alla progettazione del sottomarino d'attacco di classe Virginia; la costruzione utilizza design aggiornati della classe Ohio sviluppando un design del sottomarino sostitutivo Ohio completamente nuovo. 
Utilizzando le informazioni di questi studi, la Marina statunitense ha concluso che un nuovo design sarebbe stata l'opzione meno costosa in grado di soddisfare tutti i requisiti tecnici. Ad esempio, sia la versione modificata della classe Virginia che quella aggiornata della classe Ohio avrebbero richiesto un costoso rifornimento di carburante di mezza età, mentre ogni nucleo nucleare della classe Columbia durerà finché il sottomarino è in servizio.
Si prevede che il design e lo sviluppo tecnologico della classe Columbia costeranno $ 4,2 miliardi (dollari fiscali 2010), sebbene la tecnologia e i componenti delle classi Ohio e Virginia debbano essere inclusi ove possibile, per risparmiare denaro. Il costo per costruire i Columbia, l’unità di punta della classe, sarà stimato in 6,2 miliardi di $. La Marina ha l'obiettivo di ridurre il costo medio dei restanti 11 scafi previsti della classe a $ 4,9 miliardi ciascuno (dollari fiscali 2010). Il costo totale del ciclo di vita dell'intera classe è stimato a 347 miliardi di dollari. Si prevede che l'alto costo dei sottomarini ridurrà profondamente le costruzioni navali della Us Navy.
Nell'aprile 2014, la Marina ha completato un rapporto sulle specifiche di 300 pagine per i sottomarini del programma di sostituzione dell'Ohio. Vi sono 159 specifiche tra cui sistemi d'arma, vie di fuga, sistemi fluidi, portelli, porte, sistemi di acqua di mare e una lunghezza fissa di 560 piedi (170 m), in parte per consentire un volume sufficiente all'interno dello scafo a pressione.
Nel marzo 2016, la Marina degli Stati Uniti ha annunciato che la General Dynamics Electric Boat è stata scelta come primo appaltatore e principale cantiere di progettazione. Electric Boat eseguirà la maggior parte dei lavori, su tutti e 12 i sottomarini, compreso l'assemblaggio finale. Tutti i 18 sottomarini della classe Ohio furono costruiti anche dalla Electric Boat. La Newport News Shipbuilding di Huntington Ingalls Industries fungerà da subappaltatore principale, partecipando alla progettazione e alla costruzione ed eseguendo dal 22 al 23% del lavoro richiesto.
Alla fine del 2016, circa 3.000 dipendenti sono stati coinvolti, nella sola Electric Boat, nella fase di progettazione di dettaglio del programma, con l'approvvigionamento del primo sottomarino previsto per il 2021. Il completamento del primo sottomarino è previsto per il 2030, seguito dalla sua entrata in servizio nel 2031. Tutti i 12 sottomarini dovrebbero essere completati entro il 2042 e rimanere in servizio fino al 2085.
Il 28 luglio 2016 è stato riferito che il primo sottomarino della classe si chiamerà Columbia, per commemorare la capitale degli Stati Uniti. La classe Columbia è stata ufficialmente designata il 14 dicembre 2016 dal Segretario della Marina Ray Mabus e il sottomarino principale sarà l' USS  Columbia  (SSBN-826). La Marina vuole acquisire la prima unità della classe Columbia nell'anno fiscale 2021.
Il 28 ottobre 2020, il segretario della Marina degli Stati Uniti Kenneth J. Braithwaite ha annunciato che il secondo sottomarino si chiamerà USS Wisconsin.
Il 7 giugno 2021, l'ufficio del budget della Marina degli Stati Uniti ha annunciato che il costo totale per il primo sottomarino, il Columbia, avrebbe raggiunto i 15,03 miliardi di $, ma includeva anche i costi di pianificazione per l'intero programma.

Caratteristiche generali

Sebbene ancora in evoluzione, le seguenti sono alcune delle caratteristiche del design SSBN(X): 
  • Vita di servizio prevista di 42 anni (è previsto che ogni sottomarino effettui 124 pattuglie deterrenti durante la sua vita di servizio);
  • Life-of-the-nave nucleo combustibile nucleare che è sufficiente per potere il sottomarino per tutta la sua durata di vita prevista, a differenza degli Ohio, che richiedono un rifornimento di carburante nucleare metà della vita;
  • Tubi di lancio missilistici delle stesse dimensioni di quelli della classe Ohio, con un diametro di 87 pollici (2.200 mm) e una lunghezza sufficiente per ospitare un missile D-5 Trident II;
  • Larghezza almeno di 13 m, come quella dei sottomarini Ohio;
  • 16 tubi di lancio di missili invece di 24 tubi di lancio di missili sui sottomarini di classe Ohio;
  • Sebbene l'SSBN(X) abbia meno tubi di lancio rispetto al sottomarino di classe Ohio, si prevede che SSBN(X) avrà un dislocamento in immersione pari a quello dei sottomarini classe Ohio.

La Marina degli Stati Uniti ha ribadito ai media che "a causa delle esigenze uniche di rilevanza strategica, gli SSBN (X) dovranno essere dotati delle capacità più aggiornate e della necessaria furtività per garantire che sopravvivano per l'intero arco di vita di 40 anni. " 
Nel novembre 2012, l'Istituto Navale degli Stati Uniti, citando il Naval Sea Systems Command, ha rivelato ulteriori informazioni sul progetto: 
  • Superfici di comando di poppa a forma di X;
  • Alette da immersione sulla vela;
  • Azionamento elettrico;
  • Apparecchiature standard sviluppate per precedenti sottomarini classe Virginia; 
  • un propulsore a getto di pompa “pump-jet”;
  • rivestimento anecoico 
  • e un sistema sonar Large Aperture Bow (LAB);
  • un Submarine Warfare Federated Tactical System (SWFTS);
  • un gruppo di sistemi che integrano sonar, imaging ottico, controllo delle armi ecc.
Azionamento elettrico

L'azionamento elettrico è un sistema di propulsione che utilizza un motore elettrico che fa girare l'elica di una nave. Fa parte di un concetto più ampio (Integrated Electric Power) il cui scopo è creare un “contenitore completamente elettrico". L'azionamento elettrico dovrebbe ridurre il costo dell’intero ciclo di vita dei sottomarini riducendo allo stesso tempo la firma acustica.
Il motore turboelettrico è stato ampiamente utilizzato con successo sulle corazzate e sulle portaerei statunitensi nella prima metà del XX secolo e sul sottomarino nucleare USS  Tullibee alla fine degli anni '50. Tuttavia, un altro sottomarino a propulsione nucleare più grande, l' USS  Glenard P. Lipscomb, era stato dotato di un motore turbo-elettrico ma si dimostrò sottodimensionato ed ebbe problemi di affidabilità e manutenzione. 
A partire dal 2013, solo la Marina francese utilizza il motore turbo-elettrico sui suoi sottomarini classe Triomphant a propulsione nucleare.
Concettualmente, la trazione elettrica è solo un segmento del sistema di propulsione e non sostituisce il reattore nucleare o le turbine a vapore. Invece, sostituisce l'ingranaggio di riduzione (azionamento meccanico) utilizzato sui precedenti sottomarini a propulsione nucleare. Nel 1998, il Defense Science Board ha previsto un sottomarino a propulsione nucleare che avrebbe utilizzato la conversione diretta dell'energia, eliminando la necessità sia di riduttori che di turbine a vapore.
Nel 2014, la Northrop Grumman è stata scelta come primo progettista e produttore delle unità del generatore a turbina. Le turbine convertono l'energia termica nel vapore in energia meccanica ed i generatori convertono quell'energia meccanica in energia elettrica. L'energia elettrica viene quindi utilizzata per alimentare i sistemi di bordo e per la propulsione tramite motore elettrico. 
Vari motori elettrici sono in fase di sviluppo sia per navi militari che civili. Quelli presi in considerazione per l'applicazione sui futuri sottomarini della US NAVY includono motori a magneti permanenti (PMM) (in fase di sviluppo da parte di General Dynamics e Newport News Shipbuilding) e motori sincroni superconduttori ad alta temperatura (HTS), anch'essi sviluppati da American Superconductors come Atomica Generale. 
Dati più recenti mostrano che la Marina degli Stati Uniti sembra concentrarsi su motori di propulsione elettrica a magnete permanente con gap radiale (sebbene il design dei caccia Zumwalt sia passato dal PMM ad un motore a induzione avanzato). I motori a magneti permanenti sono in fase di test sul Large Scale Vehicle II per una possibile applicazione sui sottomarini della classe Virginia di ultima produzione, nonché sui futuri sottomarini. I motori a magneti permanenti, sviluppati dalla Siemens AG, sono utilizzati sui sottomarini Tipo 212, in servizio con le marine militari tedesca ed italiana. 







Rapporti sul sottomarino HMS Dreadnought, in programma di sostituire la classe VANGUARD, affermano che le barche possono avere sottomarino azionamento senza albero (SSD) con un motore elettrico montato all'esterno dello scafo resistente. L’SSD è stato valutato anche dalla Marina degli Stati Uniti, ma non è noto se la sostituzione della classe Ohio lo includerà. Sui sottomarini nucleari attualmente operativi, le turbine a vapore sono collegate a riduttori e a un albero che ruota il propulsore dell’elica/pump-jet. Con l'SSD, il vapore comporterebbe turbo-generatori elettrici, alimentati da turbine a vapore, che sarebbero collegati a una giunzione elettrica non penetrante all'estremità posteriore dello scafo a pressione, con un motore elettrico a tenuta stagna montato esternamente, possibilmente un sistema di propulsore a motore integrato, alimenta il propulsore pump-jet, sebbene esistano anche concetti SSD senza propulsori pump-jet. Dati più recenti, incluso un modello in scala per la sostituzione dell'Ohio visualizzato all'Esposizione Sea-Air-Space 2015 della Navy League, indicano che per l'Ohio la sostituzione sarà caratterizzata da un propulsore PUMP-JET visivamente simile a quello utilizzato sulla classe Virginia. La classe condividerà componenti della classe Virginia al fine di ridurre i rischi ed i costi di costruzione.



Compartimento missilistico comune "C.M.C."

Nel dicembre 2008, la General Dynamics Electric Boat Corporation è stata selezionata per progettare il Common Missile Compartment che verrà utilizzato sul successore della classe Ohio.
Nel 2012, la US Navy ha annunciato piani per il suo SSBN(X) per condividere un progetto di compartimento missilistico comune (CMC) con il sottomarino missilistico balistico di classe Dreadnought della Royal Navy. Il sistema lanciamissili CMC ospiterà gli SLBM in "quad pack". 

(SVPPBELLUM, Web, Google, Navyrecognition, Wikipedia, You Tube)




























 

L'Heinkel HeS 011 (o Heinkel-Hirth 109-011) era un motore aeronautico turbogetto sviluppato durante la seconda guerra mondiale dall'azienda tedesca Heinkel-Hirth.

https://svppbellum.blogspot.com/ Blog dedicato agli appassionati di DIFESA,  storia militare, sicurezza e tecnologia.  La bandiera è un simb...