lunedì 1 giugno 2020

MBDA e Leonardo per il missile stand-off "SPEAR 3" lanciabile dal Typhoon, F35 e Tempest


L’M.B.D.A. “Spear 3” (Select Precision Effects At Range) è un missile aria-terra britannico con funzionalità anti-nave.

Progetto

A MBDA-UK è stato assegnato un contratto per la fase di valutazione per il missile SPEAR 3, un'arma d’attacco a distanza con funzionalità “cruise”.   Il raggio di azione della nuova arma sarà di almeno 100 km, sebbene le cifre attuali per lo SPEAR indichino un raggio di oltre 130 km (80 + nm).  L'arma è strettamente imparentata con il missile d’attacco di precisione Brimstone che viene utilizzato per gli ingaggi a breve distanza.  L'arma volerà ad alta velocità subsonica usando un turbogetto e un kit-ala; presenterà una testa-cercante multimodale con guida INS / GPS e con un collegamento dati. La fase di valutazione si è conclusa con prove di volo nel 2014 sull’Eurofighter Typhoon. Il missile è progettato per utilizzare lo stesso turbojet Hamilton Sundstrand TJ-150 del missile "JSOW-ER".   MBDA ha di recente divulgato un lanciarazzi armato con tre missili su una singola stazione d'arma del Typhoon; un totale di quattro si adatteranno con un missile aria-aria Meteor in ciascuna baia di armi interna dell'F-35B.  Nel maggio 2016, il MOD ha aggiudicato un contratto da £ 411 milioni a MBDA per lo sviluppo del missile SPEAR 3 lanciabile in volo e che sarà integrato con il pacchetto software dell’F-35 Block 4 ed è previsto che venga utilizzato anche dall’Eurofighter Typhoon.




Prove

Nel marzo 2016 è stato lanciato un missile di prova SPEAR da un velivolo di prova Eurofighter Typhoon gestito da BAE Systems sul QinetiQ Aberporth in Galles. Il missile, dopo la separazione dall'aereo è passato al volo autonomo con il motore turbojet prima di completare una serie di manovre, terminando con l’attacco terminale fino al punto di impatto desiderato. Il missile ha seguito accuratamente la traiettoria pianificata ed è stato ben all'interno delle previsioni di simulazione; tutti gli obiettivi della sperimentazione sono stati raggiunti.

SPEAR EW

MBDA propone anche una versione SPEAR Electronic Warfare (SPEAR EW), una versione di attacco SEAD per la RAF.  È in fase di sviluppo lo sciame in rete per missili SPEAR. 

MBDA LAVORA SU NUOVA ARMA ELETTRONICA SPEAR-EW WARFARE

Le dimensioni compatte della famiglia SPEAR consentono di trasportare internamente quattro armi in ciascuna delle due postazioni interne dell'F-35, o tre per stazione sull'Eurofighter Typhoon. MBDA si è aggiudicata un contratto per la dimostrazione di SPEAR-EW, una nuova versione di guerra elettronica della famiglia di sistemi d'arma SPEAR su ordine della Royal Air Force (RAF). Lo SPEAR-EW è stato sviluppato da MBDA in collaborazione con Leonardo per completare un'ampia gamma di missioni di Soppressione della Difesa Aerea Nemica (SEAD), nell'ambito di un contratto per il Programma di Dimostrazione Tecnica (TDP) assegnato da Defence Equipment & Support (DE&S).

Il missile SPEAR-EW integrerà un carico utile EW miniaturizzato all'avanguardia di Leonardo, che fungerà da stand-in jammer per aumentare notevolmente la capacità di sopravvivenza dei velivoli RAF e per sopprimere le difese aeree nemiche, agendo come un significativo moltiplicatore di forza.

Il Ministro della Difesa Anne-Marie Trevelyan ha detto: "Questi disturbatori elettronici all'avanguardia confonderanno i nostri avversari e manterranno i nostri piloti più sicuri che mai in volo. In combinazione con la potenza devastante dei missili di precisione Brimstone e Meteor, i nostri jet F-35 e Typhoon continueranno a dominare i cieli anche negli anni a venire". Mike Mew, Direttore vendite e sviluppo commerciale di MBDA UK, ha dichiarato: "SPEAR-EW utilizza una nuova rivoluzionaria capacità che, accanto all'esistente arma SPEAR3, segna un cambiamento fondamentale nella capacità delle forze aeree amiche di condurre le loro missioni nonostante la presenza di difese aeree nemiche. La nostra visione per lo SPEAR è quella di creare uno sciame di armi in rete in grado di saturare e neutralizzare le più sofisticate difese aeree. L'aggiunta di SPEAR-EW alla famiglia, insieme al nostro missile d'attacco SPEAR già esistente, dimostra il principio dell'introduzione di varianti complementari alla famiglia SPEAR che aggiungeranno una significativa capacità e moltiplicazione della forza senza la necessità di ripetere l'integrazione della piattaforma. Abbiamo un'entusiasmante tabella di marcia di varianti e inserimenti tecnologici nella pipeline per migliorare ulteriormente la famiglia man mano che andiamo avanti". Il cuore del carico utile dello SPEAR-EW è la tecnologia avanzata e miniaturizzata della memoria digitale a radiofrequenza (DRFM) di Leonardo, che offre il più avanzato e a prova di futuro jamming e inganno elettronico oggi disponibile sul mercato. Il nuovo SPEAR-EW completerà il missile da crociera miniaturizzato abilitato alla rete SPEAR, che è progettato per ingaggiare con precisione obiettivi a lungo raggio, mobili, fugaci e riposizionabili in qualsiasi condizione atmosferica, di giorno o di notte, in presenza di contromisure, oscuramenti e camuffamenti, garantendo al contempo un sicuro stand-off range tra il velivolo e le difese aeree nemiche. 

Alimentato da un motore a turboreattore, il missile SPEAR offre un raggio d'azione più che doppio e un inviluppo operativo molto più flessibile rispetto a un'arma planante convenzionale. 

Lo SPEAR-EW sfrutta questa lunga resistenza grazie alla sua capacità di essere lanciato a distanze di stand-off potenziate e di volteggiare in attesa durante lo svolgimento della sua missione di disturbo.
Le dimensioni compatte della famiglia SPEAR consentono di trasportare internamente quattro armi in ciascuna delle due postazioni interne dell'F-35, o tre per stazione sull'Eurofighter Typhoon.  Lo SPEAR-EW manterrà la stessa forma e forma della linea di base SPEAR per consentire un unico percorso di integrazione e una soluzione di lancio.
La famiglia SPEAR completa il più ampio portafoglio di armi d'assalto di MBDA, colmando il divario tra il missile d’attacco in profondità Storm Shadow a grande e lunghissima gittata ed il missile di supporto Brimstone ad alta precisione.
Il sistema di armi SPEAR ha anche recentemente completato una serie di prove a terra e controlli di tenuta di un lanciatore triplo per SPEAR su un caccia Eurofighter Typhoon. Il lavoro è stato intrapreso da un team di ingegneri congiunti di MBDA, BAE Systems e del Ministero della Difesa, e si è svolto presso il sito di test di volo della BAE Systems a Warton, Lancashire.

ENGLISH

The Select Precision Effects At Range (SPEAR) Capability 3 is a future British air-to-ground and possibly anti-ship missile.

Background

MBDA was awarded an Assessment Phase contract for SPEAR 3, a standoff attack weapon. This is specified to have a range of at least 100 km, although current figures for SPEAR indicate a range over 130 km (80+nm). The weapon will make substantial reuse of technologies from the Brimstone precision strike missile that is used for engagements at shorter ranges. The 2 m (6.6 ft) weapon will fly at high-subsonic speed using a turbojet and wing kit, and will feature a multimode seeker with INS/GPS guidance and datalink. The assessment phase concluded with flight trials in 2014 on the Eurofighter Typhoon. The missile is set to use the same Hamilton Sundstrand TJ-150 turbojet as the JSOW-ER. MBDA has shown artwork of a three-missile launcher on a single Typhoon weapon station, and four will fit with a Meteor air-to-air missile in each internal weapons bay of the F-35B. In May 2016, the MOD awarded a £411 million contract to MBDA for the development of the air-launched SPEAR 3 missile. SPEAR 3 will be integrated with the F-35 Block 4 software package and is also planned to be used on the Eurofighter Typhoon.

Trials

In March 2016, a SPEAR trials missile was launched from a Eurofighter Typhoon trials aircraft operated by BAE Systems at the QinetiQ Aberporth range in Wales. The missile transitioned through separation from the aircraft to powered flight before completing a series of manoeuvres, ending in a terminal dive to the desired point of impact. The missile accurately followed the planned trajectory and was well within simulation predictions; all trial objectives were achieved.

SPEAR EW

MBDA is also proposing a SPEAR Electronic Warfare version (SPEAR EW), a SEAD attack version for the RAF. Networked swarm capability for SPEAR missiles is in development.

MBDA WORKING ON NEW SPEAR-EW ELECTRONIC WARFARE WEAPON

The compact size of the SPEAR family allows four weapons to be carried internally in each of the two internal weapons bay of the F-35, or three per station on the Eurofighter Typhoon.
MBDA has been awarded a contract to demonstrate SPEAR-EW, a new electronic warfare version of the SPEAR weapon system family on order for the Royal Air Force (RAF).
SPEAR-EW is being developed by MBDA in partnership with Leonardo to complete a wide range of Suppression of Enemy Air Defence (SEAD) missions, under a Technical Demonstration Programme (TDP) contract awarded by Defence Equipment & Support (DE&S). SPEAR-EW will integrate a cutting-edge miniaturised EW payload from Leonardo, which will act as a stand-in jammer to greatly increase the survivability of RAF aircraft and suppress enemy air defences, acting as a significant force multiplier.
Defence Minister Anne-Marie Trevelyan said: “These state-of-the-art electronic jammers will confuse our adversaries and keep our pilots safer than ever in the air. Paired with the devastating power of precision Brimstone and Meteor missiles, our world-class F-35 and Typhoon jets will continue to rule the skies in the years to come.”
Mike Mew, MBDA UK Director of Sales and Business Development, said: “SPEAR-EW is a revolutionary new capability that, alongside the existing SPEAR3 weapon, marks a fundamental change in the ability of friendly air forces to conduct their missions despite the presence of enemy air defences. Our vision for SPEAR is to create a swarm of networked weapons able to saturate and neutralise the most sophisticated air defences. Adding SPEAR-EW to the family alongside our existing SPEAR strike missile demonstrates the principle of introducing complementary variants to the SPEAR family that will add significant capability and force multiplication without the need to repeat the platform integration. We have an exciting roadmap of variants, spirals and technology insertions in the pipeline to further enhance the family as we move forward.”
The core of SPEAR-EW’s payload is Leonardo’s advanced, miniaturised Digital Radio Frequency Memory (DRFM) technology, which offers the most advanced and future-proof electronic jamming and deception available on the market today.
The new SPEAR-EW will complement the SPEAR network enabled miniature cruise missile, which is designed to precisely engage long range, mobile, fleeting and re-locatable targets in all weathers, day or night, in the presence of countermeasures, obscurants and camouflage, while ensuring a safe stand-off range between the aircraft and enemy air defences. Powered by a turbojet engine the SPEAR missile offers over double the range, and a far more flexible operating envelope, when compared to a conventional glide weapon. SPEAR-EW utilises this long endurance through its capacity to be launched at enhanced stand-off ranges and loiter while carrying out its jamming mission.
The compact size of the SPEAR family allows four weapons to be carried internally in each of the two internal weapons bay of the F-35, or three per station on the Eurofighter Typhoon. SPEAR-EW will keep the same form and fit as the baseline SPEAR to enable a single integration pathway and launcher solution.
SPEAR family complements MBDA’s wider portfolio of strike weapons, filling the gap between the large and very-long range Storm Shadow deep strike missile and the highly accurate Brimstone close-air-support missile.
The SPEAR weapons system also recently completed a set of ground trials and fit-checks of a loaded three-pack SPEAR launcher onto a Eurofighter Typhoon fighter aircraft. The work was undertaken by a joint engineering team from MBDA, BAE Systems, and the Ministry of Defence’s Defence Equipment and Support (DE&S), and took place at BAE Systems’ flight test site in Warton, Lancashire.

Spear Capability 3

Selective Precision Effects at Range (SPEAR) Capability 3 is the name given to a Category A project (>£400m) to deliver a weapon.
A new 100 kg class weapon being developed to be the primary air to ground armament for the Lightning II (Joint Strike Fighter) from 2021; and optimised for internal carriage. SPEAR Cap 3 will provide the capability to destroy/defeat a wide range of targets at range, including mobile and relocatable targets, in all weathers, day and night, in all environments under tight rules of engagement. Clearly, it is designed to work with the UK’s future F-35B fleet for attacks against integrated air defences using its increased stand-off distance to enhance the launch aircraft survivability. In other air interdiction missions against lesser capability air defences, it will be used to destroy the full gamut of likely targets on the ground and with some secondary capability against smaller targets at sea or in the littoral.

SPEAR Capability 3 History

There has been a number of ‘feed in’ research programmes including the Sensor to Effect Phase 2 and Time Sensitive Target Test Bed that have developed the control and communication systems between the weapon and other platforms but the requirement emerged towards the end of 2009, although initial work had been completed at the turn of the century.
Increasing capabilities and proliferation of capable air-defence systems and ever more complex rules of engagement environments combined to produce to key drivers; the ability to be retargeted in flight and have the ability to stand off at a sufficient distance to enable integrated air defence systems to be attacked.

Later, this evolved to also include a specific launch platform, the F-35 Lightning II, 4 per bay.

MBDA launched their concept for SPEAR Capability 3, called SPEAR, at Farnborough in 2012, describing it as both a step change and a mini cruise missile. This initial concept has since evolved, the location of control surfaces and body shape for example.
The SPEAR Capability 3 Assessment Phase also included Capability 2 block 2 and Sea Ceptor so when the National Audit Office report, the individual component costs are not clear.
The real issue with SPEAR Capability 3 at the time was that the MBDA version was not the only game in town. Raytheon has their Small Diameter Bomb (SDB) Increment II or GBU-53. There is no doubt SDB-II has less capability, it is a glide only weapon and thus has a lower time to target (which enables the launch aircraft to ‘get the f**k out of dodge’ sooner) and longer range (greater stand-off distance).
The SDB-II has a tri-mode seeker (SAL, IR and MMW) and a larger warhead than SPEAR Cap 3. This was the dilemma for the MoD, buy off the shelf or develop the MBDA system.
Raytheon went on the public relations offensive and hinted that a UK SDB-II could be made at their UK manufacturing facility.
The F-35B is not scheduled to carry the SDB-II until 2022 as part of Block 4a software and recent news indicates some minor modifications (hydraulic line and bracket) to the bomb way will be required in order to allow the carriage of 4 per bay, these are planned to be incorporated into the production aircraft from 2019 onwards. Whether these plans come to fruition within the proposed timescale is open for discussion.
SPEAR Capability 3 has been reportedly proposed for Block 4 software on the F-35 programme.

Initial flight development work was carried out on the Typhoon.

In March 2016, it was reported that the MoD were going to extend the MBDA Assessment Phase work, thus effectively making its choice.
Main Gate decision on Demonstration and Manufacture phase was not planned until 2018 but several media outlets had reported in early May that MBDA were about to be awarded a £411 Million contract to develop SPEAR Cap 3.
On the 18th of May 2016, the MoD announced the next stage of development for SPEAR Capability 3.
The Ministry of Defence has awarded a £411 million contract to develop a new missile for the UK’s future F-35B supersonic stealth aircraft.
The contract secures around 350 highly skilled missile engineering jobs across MBDA’s sites in Stevenage, Bristol and Lostock, with an equivalent number of jobs in the wider supply chain, and will draw on engineering and manufacturing expertise from companies across the UK. Spear 3 is from the same family of weapons as Brimstone, currently being used by the RAF to combat Daesh in Syria and Iraq, but it packs a bigger punch and has a significantly increased range.
The contract, with MBDA, will enable four years of critical design and development work which will tailor the weapon for use within the internal weapons bay of F-35B, the world’s most advanced combat aircraft. It is being designed specifically for F-35B Lightning II operations launched from HMS Queen Elizabeth and HMS Prince of Wales, the Royal Navy’s two £3 billion aircraft carriers.
The £411 million contract award follows an initial £150 million assessment phase and, if successful, it is expected that Spear 3 will enter service in the mid-2020s
It was later announced that the first test firing had taken place in March 2016.
No news on Typhoon integration but several outlets have reported it is an aspiration and will hopefully use the new three round common launcher for a total of twelve carried munitions.
So although SPEAR Cap 3 has been test fired from Typhoon, integration would require more detailed and demanding activity.

Spear Capability 3 Capabilities

Perhaps the best way to describe SPEAR Cap 3 is either a longer range Brimstone or jet powered SDB-II.
The conceptual requirement emerged some time ago but was been given particular impetus by the proliferation of advanced Russian and Chinese air defence systems, especially the SA-21 and related systems.

Its key features include:
  • Internal turbojet with flush intakes and folding wings;
  • F-35B internal or external carriage with 4 per bay when carried internally;
  • External carriage on the Typhoon (although this does not seem to be in the current plan);
  • 140km plus range;
  • Two-way datalink for re-tasking during flight;
  • GPS/INS, Millimetric Radar and Semi-Active Laser (SAL) terminal guidance (final options to be confirmed);
  • Multi fuzing and tuneable warhead;
  • MIL-STD 1760 and UAI interface compliance for F-35 and Typhoon integration.

The turbojet propulsion is used to provide extended range, headwind resistance, survivability against air defence weapons and additional flexibility. It also provides a much shorter time to target than a glide weapon which improves survivability of the aircraft. With GPS and multi-mode guidance, together with the two data link, MBDA is going for absolutely maximum flexibility.
The turbojet used in the designs so far has been a version of the Whitney AeroPower (Hamilton Sundstrand) TJ-150 turbojet that is also used on the MALD and MALD-J systems.
MBDA have used parts of the ASRAAM airframe as a basis for SPEAR which has some echoes of the BAE Typhoon missile (not aircraft) proposed for the requirement what would eventually be fulfilled by Brimstone!
The modular approach taken by Brimstone 2 and ASRAAM will be used on SPEAR, MBDA has claimed this would allow SPEAR to be modified to include a booster motor that would allow it to be used in the land attack and counter Fast Inshore Attack Craft (FIAC) role. MBDA released a graphic a few years showing a concept for a Common Anti-Surface Modular Missile (CAsMM) that used the same launch cell as the Common Anti-Air Modular Missile (CAMM).

(WEB, GOOGLE, WIKIPEDIA, THINKDEFENCE, YOU TUBE)



























Il bombardiere strategico Kawasaki Aircraft Industries Ki-91


Il Ki-91 era un bombardiere giapponese sviluppato dalla Kawasaki Aircraft Industries durante gli ultimi anni della seconda guerra mondiale.

Sviluppo

All'inizio del 1943, in seguito alla cancellazione del Nakajima Ki-68 e del Kawanishi Ki-85 a causa del fallimento della Nakajima G5N, Kawasaki  rispose al requisito dell'esercito imperiale giapponese per un bombardiere a lungo raggio di dimensioni e prestazioni simili alla B-29 Superfortress con il Ki-91. Come il G5N, il Ki-68 e il Ki-85, il Ki-91 doveva essere in grado di lanciare attacchi contro gli Stati Uniti continentali dal Giappone. Nell'aprile del 1944 fu costruito un modello in legno per lo sviluppo e, a maggio, fu ordinata la produzione del primo prototipo. La costruzione del prototipo iniziò a giugno, ed i primi raid di B-29 sul Giappone erano in corso a partire da quel mese. Nel febbraio del 1945, il primo prototipo del Ki-91 fu completato al 60% quando un raid aereo di B-29 danneggiò la struttura nella prefettura di Gifu dove il prototipo Ki-91 era in costruzione, portando il programma a una battuta d’arresto.

Design

Il Ki-91 era un progetto per un bombardiere pesante simile per dimensioni e carico di bombe alla B-29 Superfortress ed al Convair B-32. Aveva un'apertura alare ed una fusoliera più grandi rispetto ai B-29 e B-32 e presentava una cabina pressurizzata per consentire i voli ad alta quota. Tuttavia, al prototipo mancava una cabina pressurizzata, ma gli aerei di produzione sarebbero stati costruiti con la cabina pressurizzata. 

Specifiche

Caratteristiche generali:
  • Equipaggio: 8
  • Lunghezza: 32,97 m (108 ft 2 in)
  • Apertura alare: 47,9 m (157 ft 2 in)
  • Altezza: 9,99 m (32 ft 9 in)
  • Superficie alare: 223,99 m 2 (2.411,0 piedi quadrati)
  • Peso a vuoto: 33.999 kg (74.955 libbre)
  • Peso lordo: 57.999 kg (127.866 libbre)
  • Motopropulsore: 4 motori a pistoni radiali raffreddati ad aria Mitsubishi Ha-214 Ru da 18 cilindri, 1.900 kW (2.500 CV) ciascuno.
  • Eliche: elica a 4 pale a velocità costante.


Prestazioni:
  • Velocità massima: 580 km / h (360 mph, 310 kn) a 9.808 m (32.178 piedi)
  • Autonomia: 9.000–10.000 km (5.600–6.200 mi, 4.900–5.400 nmi)
  • Massimale di servizio: 13.500 m (44.300 piedi)
  • Tempo all'altitudine: 8.000 m (26.000 piedi) in 20 minuti e 30 secondi.


Armamento:
  • Guns:
  • Mitragliatrici 12x 20 mm (0.787 in)
  • Bombe: fino a 4.000 kg (8.800 libbre) di bombe.


ENGLISH

The Kawasaki Ki-91 represented a rare four-engine heavy bomber initiative of the middle-to-late war years for the Japanese Empire. The Ki-91 gained steam at a time when the Japanese military was reeling from consistent losses in-the-field and air supremacy was being lost on a month-to-month basis. It would seem prudent that fighters and interceptors would be the call of the day as it became in Germany but this four-engined "heavy" was still pushed through by Kawasaki.
The design was to feature a wingspan reaching 157.4 feet with a length of 108.2 feet - dimensionally larger than even the famous American Boeing B-29 "Superfortress" (141.2 foot wingspan, 99 foot length). Loaded weight was estimated at 127,870 pounds. The bombload was to be in the 8,820 lb range (decidedly less than the Superfortress' 20,000lb load limit) and the aircraft defensed by no fewer than 12 x 20mm cannons - two fitted to a nose turret, two in a dorsal turret, four across two ventral turrets (one forward, the other aft), and four to complete a turret at the tail - one of the best-armed bombers of the war to say the least. The large aircraft would be powered by 4 x Mitsubishi Ha-214 "Ru" engines developing upwards of 2,500 horsepower each and estimated performance specs included a maximum speed of 360 miles per hour with a ferry range out to 6,215 miles (the B-29 managed a speed of 360mph with a ferry range out to 5,600 miles).
 Outwardly, the aircraft was to be given a stepped cockpit approach meaning the flight deck sat out from the fuselage contours and held its own window panels (unlike the streamlined form of the B-29). The fuselage would be a rounded rectangle in profile with slab sides, the shape broken up some by the placement of several observation bubbles about her design. Glazing would be featured at the nose and around the cockpit with vision ports located throughout the rest of the fuselage and at gun positions. Mid-mounted monoplane wings were used, each featuring a pair of engine nacelles along their leading edges. The tail unit would consist of a single, rounded vertical fin coupled to a pair of low-mounted horizontal planes - these surfaces seated ahead of the tail turret. A tricycle undercarriage would be employed which was a departure of the "Tail dragger" configuration of old.
Design work on the aircraft began in May of 1943 and progress was such that by the end of 1944 the first prototype was being built while Kawasaki lines were gearing up for serial production. However, an Allied bombing raid during February 1945 destroyed much of what was to make the Ki-91 possible, forcing the program to be halted and ultimately abandoned in favor of fighters and interceptors to contend with the American B-29 presence over the Japanese homeland.

(Web, Google, Wikipedia, military factory, You Tube)














domenica 31 maggio 2020

US NAVY: il siluro MK.48 e la sua versione ADCAP (ADvanced CAPability)


L'Mk.48 è da più di 30 anni il siluro standard della United States Navy e di diverse altre marine militari.
È un siluro ad alte prestazioni, con capacità di ingaggio di bersagli sia di superficie sia subacquei, con una lunga corsa ed un'elevata velocità. La sua versione ADCAP (ADvanced CAPability) apparsa negli anni '80 e via via migliorata è capace di superare i 55 nodi (102 km/h) di velocità fino a una distanza di 38 km o 40 nodi (74 km/h) a una distanza di 50 km.
Il siluro avanzato Mark 48 con la sua capacità avanzata ADCAP è un’arma statunitense lanciabile da sottomarini; è stato progettato per affondare da profondità subacquee gli SSN ostili e le navi di superficie ad alte prestazioni.



Storia

Il Mk-48 siluro è stato progettato alla fine del 1960 per tenere il passo con i progressi della tecnologia subacquea sovietica. L’arma è operativa dal 1972, ed ha sostituito i vecchi siluri Mk-37 e MK-14 come arma principale dei sottomarini dell’US Navy. Con l'entrata in servizio dell’SSN sovietico classe ALFA nel 1972, fu presa la decisione di accelerare il programma dell’ADCAP, che hanno condotto a modifiche significative al siluro. I test sono stati eseguiti al fine di garantire che l'arma potesse tenere il passo con gli sviluppi futuri e fu modificata con acustica ed elettronica migliorata. La nuova versione dell'arma, noto anche come Mk-48 Mod 4, è stata ampiamente testata e la produzione è iniziata nel 1985, con l'entrata in servizio nel 1988. Da allora in poi, vari aggiornamenti sono stati aggiunti al siluro MK48. A partire dal 2012 l’Mk-48 Mod 6 era già in servizio; una versione Mod 7 fu licenziata nel 2008 durante esercitazioni navali nel Pacifico. L'inventario della US Navy nel 2001 era pari a 1.046 siluri Mk-48. Nel 2017 la produzione della Lockheed era di circa il 50 esemplari  l’anno.



Distribuzione

Il siluro Mk-48 è stato progettato per essere lanciato da tubi lanciasiluri ed è stata imbarcata da tutte le unità sottomarine dell'US Navy, tra cui OHAIO, SEAWOLF, LOS ANGELES, VIRGINIA. E 'utilizzato anche su unità canadesi, australiane, olandesi. La Royal Navy ha scelto di non comprare il Mark 48, preferendogli lo Spearfish.
L’MK-48 e l’Mk-48 ADCAP possono essere guidati da un sottomarino tramite filoguida collegata al siluro. Essi possono anche utilizzare i propri sensori attivi o passivi per eseguire le procedure di ricerca, di acquisizione e di attacco programmati. Il siluro è progettato per detonare sotto la chiglia di una nave di superficie, spezzando la chiglia e distruggendo la sua integrità strutturale. In caso di un lancio a vuoto, l’arma può fare un giro per un ulteriore tentativo d’attacco.



Propulsione

Il motore piatto oscillante a pistone è alimentato da un motore alimentato con combustibile a ciclo Otto II.
Il siluro utilizza una testa cercante attiva elettronicamente "pinger" (2D gradualmente matrice sonar) che consente di evitare di dover manovrare quando ci si avvicina al bersaglio ostile. Voci non confermate indicano che i sensori del siluro possono monitorare i campi elettrici e magnetici. Dal 1977-81 sulla testata sono state utilizzate bobine elettromagnetiche allo scopo di rilevare la massa metallica dello scafo della nave e detonare quindi alla giusta distanza.
Il siluro è stato oggetto di un continuo miglioramento durante la sua vita di servizio. Nel 1990, una variante Mod 6 dell’ADCAP ha molto migliorato il rumore irradiato e l’isolamento del motore, rendendo questo siluro più difficile da individuare da parte di un potenziale bersaglio.
L’Advanced System sonar a banda larga MK48 Mod 7 (CBASS) è un siluro ottimizzato sia per le acque profonde e per quelle litorali con avanzate capacità di contro-contromisura ECM-ECCM. 



L’MK48 ADCAP Mod 7 è il risultato di un programma di sviluppo congiunto con la Royal Australian Navy ed ha raggiunto la capacità operativa iniziale nel 2006. La variante modulare mod.7 aumenta la larghezza di banda del sonar che consente di trasmettere e ricevere i ping su una banda di frequenza più ampia, sfruttando tecniche di elaborazione dei segnali a banda larga per migliorare notevolmente la ricerca, l'acquisizione e l'efficacia attacco. Questa versione è molto più resistente alle contromisure nemiche.
Il 25 luglio 2008, un MK 48 Mod 7 CBASS siluro lanciato da un sottomarino australiano classe COLLINS, l'HMAS  Waller, ha affondato un bersaglio di prova durante l’esercitazione RIMPAC 2008.
Nel 2015 l’US Navy ha annunciato l'intenzione di riavviare la produzione e cercare un design più modulare. La Lockheed Martin aggiornerà gli MK.48 esistenti per includere un nuovo sistema di guida a banda larga Advanced System Sonar comune (CBASS), oltre a migliorare la propulsione e la resistenza alle contromisure elettroniche.
A partire dal 2003, la US Navy ha iniziato il programma Stealth Torpedo Enhancement che mira a migliorare la capacità dell’Mk 48 esistente mediante l'utilizzo di fonti energetiche alternative, tra cui celle a combustibile elettriche. Il programma è in corso, con molti dettagli ancora classificati.



Specifiche ADCAP mk-48 (i dati riportati sono ampiamente sottovalutati):
  • Modalità: doppia funzione
  • Lunghezza: 5,79 m
  • Diametro: 533 mm (21 ")
  • Portata:> 25 miglia nautiche
  • Velocità: 55 kt segnalata, probabilmente maggiore
  • Profondità massima: + +
  • Testata: 295 kg
  • Propulsione: guida termica di una pompa a getto.
  • Principale evidenza: guidata da filo.

Operatori attuali:
  • Royal Australian Navy
  • Marina brasiliana
  • Royal Canadian Navy
  • Royal Netherlands Navy
  • Marina degli Stati Uniti.




Operatore futuro: Taiwan - Repubblica di Cina Navy: MK48 MOD6 AT.

ENGLISH

Torpedoes are self-propelled guided projectiles that operate underwater and are designed to detonate on contact or in proximity to a target. They may be launched from submarines, surface ships, helicopters and fixed-wing aircraft. The three major torpedoes in the Navy inventory are the Mark 48 heavyweight torpedo, the Mark 46 lightweight and the Mark 50 advanced lightweight.
The MK-48 is designed to combat fast, deep-diving nuclear submarines and high performance surface ships. It is carried by all Navy submarines. The improved version, MK-48 ADCAP, is carried by attack submarines, the Ohio class ballistic missile submarines and will be carried by the Seawolf class attack submarines. The MK-48 replaced both the MK-37 and MK-14 torpedoes. The MK-48 has been operational in the US Navy since 1972. MK-48 ADCAP became operational in 1988 and was approved for full production in 1989. The SSN 714 Norfolk fired the first ADCAP torpedo on 23 July 1988, sinking the FORREST SHERMAN class destroyer DD 938 Jonas K. Ingram. MK-48 and MK-48 ADCAP torpedoes can operate with or without wire guidance and use active and/or passive homing. When launched they execute programmed target search, acquisition and attack procedures. Both can conduct multiple reattacks if they miss the target.
A highly capable weapon, the MK 48 can be used against surface ships or submarines, and has been test fired under the Arctic ice pack and in other arduous conditions. The ADCAP version, in comparison with earlier MK 48 torpedoes, has improved target acquisition range, reduced vulnerability to enemy countermeasures, reduced shipboard constraints such as warmup and reactivation time, and enhanced effectiveness against surface ships. The MK 48 is propelled by a piston engine with twin, contra-rotating propellers in a pump jet or shrouded configuration. The engine uses a liquid monopropellant fuel, and the torpedo has a conventional, high-explosive warhead. The MK 48 has a sophisticated guidance system permitting a variety of attack options. As the torpedo leaves the submarine's launch tube a thin wire spins out, electronically linking the submarine and torpedo. This enables an operator in the submarine, with access to the submarine's sensitive sonar systems, initially to guide the torpedo toward the target. This helps the torpedo avoid decoys and jamming devices that might be deployed by the target. The wire is severed and the torpedo's high-powered active/passive sonar guides the torpedo during the final attack.
The MK 48 Mod 5 ADCAP torpedo is an improvement to the MK 48 submarine launched torpedo. It is a heavyweight acoustic homing torpedo with sophisticated sonar and a fuzed warhead. The ADCAP enhancement includes all digital guidance and control systems, digital fuzing systems, and pro-pulsion improvements which add speed, depth, and range capability. The Navy will produce about 1046 MODS ADCAPs, replacing an equivalent number of baseline (Mod 5) ADCAPs, and maintaining the total inventory of ADCAP torpedoes at 1046. One of the major advantages of using readily available technology to develop an updated weapon using the current torpedo body and off the shelf systems resulted in significant savings and reduction in the development time for the ADCAP torpedo. In addition, by using currently installed systems in place for operating and maintaing the MK-48 torpedo very little additional cost is incurred in new facilities for maintenance and repair.
The Navy developed two hardware modifications to ADCAP, called the G&C (Guidance and Control) MOD and the TPU (Torpedo Propulsion Upgrade) MOD. The G&C MOD replaces the obsoles-cent guidance and control set with current technology, improves the acoustic receiver, and adds additional memory and improves processor throughput to handle the expanded software demands anticipated for near term upgrades. The TPU MOD improves the propulsion unit as discussed in the classified version of the FY96 Annual Report. Both modifications were combined into one torpedo, the MK 48 Mod 6 (MODS ADCAP).
Software Block Upgrade III (BU III) is intended to provide a near-term improvement for use in the baseline G&C for improved performance in some key scenarios.
Software Block Upgrade IV is intended to provide a mid-term upgrade for use in the MODS G&C for improved performance in key scenarios as discussed in the classified version of this report. It will use advanced sonar and signal processing algorithms.
One engineering change planned for the MODS ADCAP, the Common Torpedo Development Vehicle (COT-DV), is planned for fleet introduction in the FY01 time frame. COT-DV is a common processor to be used on all advanced U.S. torpedoes, that will use COTS hardware and be significantly more capable than the current MODS G&C. It will initially use BU IV software.
Another hardware upgrade, Common Broadband Advanced Sonar System (CBASS), is planned for IOC in FY04. Additional information about CBASS is contained in the classified version of this report.
The ADCAP torpedo OPEVAL was completed in August 1988, and the B-LRIP report was sent to Congress in December 1988. ADCAP was reported to be operationally effective against certain threats, but not operationally effective against other threats at that time. The system was reported operationally suitable. The Navy subsequently authorized full-rate production, but Congress constrained procurement because of the concerns identified in test reporting. Modifications were implemented by the Navy to improve performance in certain scenarios, upgrade fuzing systems, and improve reliability. These modifications were considered effective. In 1994 a second software upgrade was introduced to improve performance and reliability.

The MODS ADCAP (MK 48 Mod 6), when properly employed, is more effective than the ADCAP torpedo (MK 48 Mod 5). Unfortunately, production MOD 6 ADCAPs have shown a significant vulnerability, differing from the test units. This production problem is typical of problems seen in the initial phases of LRIP. The program office is investigating. DOT&E will continue to follow this.
Performance in some environments of both ADCAP and MODS ADCAP, against certain targets employing advanced tactics and equipment, still needs to be improved. Shortfalls are discussed in the classified version of this report. The program office is aggressively working to upgrade these modes.
The MK 48 ADCAP torpedo R&D program focuses on two specific areas through FY99: Guidance and Control (G&C) software block upgrades and wideband sonar capability. The Chief of Naval Operations continues to stress shallow water (less than 600 feet) as a critical operating area to counter third world diesel electric submarines. Torpedo testing in shallow water has demonstrated that in-service ADCAP has less than full capability in this difficult environment. However, this testing, in conjunction with laboratory simulation efforts, has shown that significant performance improvements can be made by implementing changes to weapon tactics and software algorithms. Development, implementation and testing of these changes is being accomplished under the ADCAP G&C software block upgrade program.
The focus of the MK 48 ADCAP torpedo R&D program for FY99 and out has shifted from being primarily concentrated on Software Block Upgrade efforts to a coordinated hardware/software upgrade for countering evolving threats and maintaining robust performance. Countermeasure (CM) sophistication and availability on the open market directly affects ADCAP kill proficiency and its ability to counter rapidly evolving threats. The Common Broadband Advanced Sonar System (CBASS) program will develop and field a wideband sonar capable of identifying CMs and discriminating them from the target. CBASS received an ACAT III designation on 17 April 1997, with full rate production scheduled to begin in FY04.
The introduction of phased prototyping in FY01 will provide a more rapid technology transition path for incremental torpedo improvements and upgrades (including the development and test of New Technology Concepts from the R&D community (6.2) and contractor Independent Research and Development (IR&D)). This approach will incorporate accelerated in-water testing of the new concepts allowing early Fleet input into future ADCAP upgrades and help to provide the foundation for Next Generation Torpedoes. These efforts will continue torpedo development investment at a lower cost and shorter term than traditional torpedo development programs.

(Web, Google, Wikipedia, You Tube)























US ARMY - US MARINES - Comando Operazioni Speciali degli Stati Uniti (USSOCOM): il Corpo dei marines statunitensi ha raggiunto la piena capacità operativa per il fucile da “sniper” BARRETT ASR MK 22 Mod.0.

https://svppbellum.blogspot.com/ Blog dedicato agli appassionati di DIFESA,  storia militare, sicurezza e tecnologia.  La bandiera è un simb...