giovedì 10 ottobre 2019

Il P72A di Leonardo Velivoli (ATR 72MP) nella configurazione operativa Final Plus (FC Plus)



In data 11 febbraio 2021 è giunto a Sigonella, presso la sede del 41° Stormo ASW dell'AMI, il quarto ed ultimo velivolo P-72A di Leonardo. A differenza dei 3 precedenti, questo ultimo velivolo è stato consegnato nella configurazione cosiddetta Final Plus (FC Plus), con: 
  • l'implementazione di numerosi upgrade su sensori, 
  • sul sistema di missione 
  • e sulle capacità di integrazione e comunicazione. 

E' stato anche lanciato il retrofit per i 3 precedenti velivoli, configurati in Initial Capability (IC), con l'obiettivo di portarli nel più breve tempo possibile al nuovo standard operativo.


Il Leonardo Velivoli ATR 72MP è un aeroplano bimotore a turboelica per la lotta antisommergibile e per il pattugliamento marittimo, prodotto dall'azienda aeronautica italiana Leonardo Velivoli.

Sviluppo

Sviluppato per soddisfare le esigenze dell'Aeronautica militare italiana di un velivolo ad interim (anche se in futuro potrebbe essere definitiva magari aggiungendo capacità ASW) per la sostituzione dei pattugliatori marittimi Breguet Br 1150 Atlantic, l'ATR-72MP (P – 72A in seno alla forza aerea) fu basato sull'aereo di linea ATR 72.


Tecnica

La cellula, basata sulla più recente configurazione del velivolo, l'ATR-72-600, incorpora un nuovo cockpit digitale e nuovi motori turboelica Pratt & Whitney Canada PW127M che azionano eliche a 6 pale Hamilton 658F ad alta efficienza. I nuovi motori sono capaci di fornire una potenza termodinamica maggiore del 5% in fase di decollo (massima potenza), che comporta un miglioramento delle prestazioni in condizioni ambientali calde/alta quota e/o in una riduzione degli spazi necessari al decollo, nonché in migliori prestazioni in caso di avaria di un propulsore. Come il velivolo da cui deriva, l'ATR-72MP, oltre ad avere prestazioni di volo migliorate, può adottare un profilo di avvicinamento relativamente ripido (6°) che gli permette di operare da piste corte e persino da superfici non pavimentate, innevate o di limitata larghezza (14m) aumentando enormemente la disponibilità di impiego operativo.
Il velivolo non è dotato di APU (Auxilliary Power Unit), ma fa ricorso al cosiddetto Hotel Mode: impiega cioè il motore turboelica di destra per generare energia elettrica e per alimentare l'aria condizionata. Tale sistema fa ricorso ad un freno sull'elica che blocca la turbina di potenza: in tal modo la sezione ad alta pressione (compressore e turbina) muove l'alternatore che fornisce energia elettrica, mentre l'aria spillata dal compressore tra gli stadi di bassa pressione e di alta pressione viene utilizzata per alimentare l'impianto di condizionamento. Grazie a tale soluzione il velivolo può operare anche da piste praticamente prive di infrastrutture, altro elemento che favorisce il dispiegamento operativo. Sempre relativamente ai motori, la serie M aumenta anche la potenza disponibile in crociera, pur mantenendo comunque un ridotto consumo specifico e distinguendosi per una manutenzione piuttosto semplice e per la totale rispondenza alle più recenti normative in tema di rumorosità.
Anche se esteriormente l'ATR-72MP può sembrare molto simile all’ATR-72 civile, in realtà le modifiche strutturali che ha subito sono state molto significative. Basti pensare al portello laterale posteriore apribile in volo, alle 2 cupole laterali a bolla (bubble window) per l’osservazione, a tutti i buchi che sono stati aperti in fusoliera per sistemare radome o sensori, per non parlare dei diversi piloni (hard point) aggiunti sulla fusoliera. Riguardo ai piloni, il P-72A ha solo la predisposizione per i 4 hardpoint installati sull’ATR-72 ASW turco (che comunque sarebbe piuttosto semplice montare in un secondo tempo): il velivolo dell’AM dispone invece di un punto d’attacco supplementare (che manca sul velivolo turco) destinato al trasporto del faro da ricerca. Il searchlight, che è piuttosto simile al modello già installato sugli ATR-42MP della GdF, è collocato sul latro destro, poco dietro al lancia chaff & flare anteriore. Tutti gli interventi strutturali sopracitati hanno richiesto oomunque un attento studio ingegneristico e, se necessario, i dovuti irrobustimenti. Pure dal punto di vista aerodinamico l’insieme di queste modifiche ha prodotto qualche lieve controindicazione. Aggiungere piloni, radome (come quello del radar ventrale o quello sul dorso del sistema satellitare) e soprattutto i vari foruncoli dei sistemi di autoprotezione, ESM ed ELINT, ha provocato ovviamente un incremento della resistenza (drag) che ha comportato una perdita di una decina di nodi di velocità anche se tutto ciò non ha influito significativamente sulle prestazioni operative del velivolo. Quando si parla di pattugliamento marittimo viene subito in mente il problema della corrosione legato all'impiego dell'aereo in un ambiente umido e salino. Da questo punto di vista, il velivolo ha potuto sfruttare le ottime soluzioni già impiegate con successo sulla versione civile, ciò non comporta la necessità di ulteriori miglioramenti. Esso, come tutta la famiglia ATR a partire dalla precedente serie 500, risulta particolarmente silenzioso, sia all'esterno (aspetto utile tanto in operazioni belliche quanto nelle missioni di sorveglianza) sia all'interno. Per quanto riguarda il rumore in cabina, la serie 600 è stata infatti migliorata notevolmente anche rispetto agli ATR-42/72-500. Il comfort offerto dai turboelica franco-italiani è ai massimi livelli per un velivolo della loro categoria; si tratta di caratteristiche non così comuni su una macchina per impiego militare. Grazie alla sua derivazione commerciale, l'ATR-72MP può infatti garantire un’ergonomia complessiva a cui gli equipaggi militari non sono così avvezzi. Il sistema di controllo ambientale, che fornisce una pressurizzazione ideale e un ottimale condizionamento in ogni fase del volo, livelli molto bassi di rumore interno, sedili ergonomici, un cucinino e una toilette di standard civili, contribuiscono a ridurre il carico e lo stress di Iavoro durante le lunghe missioni di pattugliamento.



La conversione

La conversione di un ATR-72-600 in ATR-72MP è abbastanza complessa e si svolge essenzialmente tra Venezia-Tessera e Torino-Caselle. Lo stabilimento Leonardo di Venezia-Tessera riceve infatti da Tolosa (sito dedicato all’assemblaggio finale degli ATR) una cellula green che deve essere estesamente modificata.
Presso lo stabilimento veneto il velivolo viene svuotato per apportare una serie di modifiche alla cellula (inserimento degli hardpoint, foratura della fusoliera per collocare radar, FLIR, nuovi oblò a bolla, antenna dei sistemi ECM/ESM, lanciatori di sonoboe e di chaff & flares, giusto per fare alcuni esempi) e per poter stendere circa 400 cablaggi nuovi necessari al corretto funzionamento della sensoristica e del sistema di missione. Un'altra modifica importante riguarda il conetto di coda. ll ATR-72A è infatti già predisposto per l’installazione del MAD (Magnetic Anomaly Detector), un apparato realizzato dalla canadese CAE, che potrebbe essere installato facilmente se si volesse dotare il velivolo di capacità antisom (ASW). Lo stesso conetto di coda, dotato del medesimo MAD previsto per il ATR-72MP, è montato sull’ATR-72 ASW turco.
Complessivamente, i velivoli restano a Venezia-Tessera per le attività di modifica circa 18 mesi, successivamente vengono inviati presso la sede di Leonardo di Torino-Caselle dove viene effettuata tutta l’attività di messa a punto del velivolo e del sistema di missione. Il sito Leonardo di Torino-Caselle costituisce il baricentro delle attività sul P-72A italiano ed anche di quelle sull’ATR-72 ASW destinato alla Marina turca.



Interni

Il layout interno dell'ATR-72MP tradisce la sua vocazione multiruolo: non solo pattugliatore e SAR ma anche posto comando, controllo, comunicazioni ed ELINT. Sull'ATR-72MP, alle spalle della cabina di pilotaggio, è stato posizionato sul lato destro (sul lato sinistro è stato mantenuto il grande portellone di carico presente anche sugli ATR civili) un rack elettronico che ospita una serie di sistemi ausiliari. Proprio relativamente a questo aspetto, l'ATR-72MP è dotato di capacità di generazione elettrica e di sistemi di raffreddamento supplementari, dimensionati per soddisfare le esigenze dell’elettronica aggiuntiva e del sistema di missione. Nella parte anteriore del velivolo è collocato un tavolo tattico, noto anche come area coordinamento (area commander), dotato di 4 posti e destinato all’attività di gestione e pianificazione (che può anche essere utilizzato come area di riposo). La parte centrale della fusoliera è occupata, sul lato destro, dalla fila delle 4 consolle dette MOC (Multifunctional Operator Consolle) cuore del sistema di missione ATOS (Airborne Tactical Observation and Surveillance), mentre su quello sinistro sono posti gli armadi dell’elettronica. A poppa vi è una piccola area passeggeri dotata di 4 poltroncine su 2 file (8 posti totali, eventualmente convertibile in futuro in area lancio delle sonoboe sempre al fine di dotare il velivolo di capacità ASW) e ci sono le 2 postazioni per gli osservatori dotate di oblò a bolla (bubble window). Più in coda sono invece collocati i 2 kit SAR e la slitta per lo sgancio in volo dei kit stessi. Tale procedura viene effettuata aprendo il portellone posteriore sinistro (che teoricamente potrebbe permettere il lancio di paracadutisti, ma solo teoricamente perché non è stato certificato per tale scopo). Infine, sempre in coda, sono posizionati un cucinino e la toilette, 2 elementi fondamentali su un velivolo destinato a compiere missioni della durata di 8-10 ore.



Il sistema di missione

II P-72A è dotato di sistema di missione ATOS (Airborne Tactical Observation and Surveillance) realizzato da Leonardo Elettronica che integra i diversi sensori di bordo e dispone di 4 consolle multifunzionali dotate di schermi da 24 pollici ad alta definizione (HD) controllate da tastiere e da pannelli di controllo touch screen, più 4 computer portatili (laptop) collegati in rete (che vengono utilizzati dalle 4 postazioni del tavolo tattico). Il sistema, che permette anche una gestione unificata di tutti gli apparati di comunicazione (multi data-link, Link11, Link16, satcom Ku/Ka, ecc.), è completamente integrato con una versione opportunamente militarizzata del glass cockpit dell’ATR-72-600.



Sistemi

Per svolgere la sua missione il sistema ATOS fa ricorso ad un complesso di sensori principali che è costituito sostanzialmente dal radar, dalla palla elettro-ottica, dal pacchetto ESM/ELINT, dall’IFF, dall’AIS, dal direction finder e dalla suite di comunicazioni e data link.

Radar Seaspray 7300E

L’elemento principale della suite sensoristica è rappresentato dal radar Seaspray 7300E di Leonardo Elettronica che è collocato in un radome pressurizzato posto in posizione ventrale impiegato per la localizzazione ed il tracciamento dei bersagli di superficie ed aerei anche di piccole e piccolissime dimensioni (come per esempio lo snorkel di un sottomarino) o con una RCS (Radar Cross Section) ridotta. Si tratta di un sensore che opera in banda X (8-12 GHz per una lunghezza d’onda compresa tra 2,5 cm e 3,75 cm) e che è caratterizzato da un’antenna a scansione elettronica attiva (AESA, Active Electronically Scanned Array) dotata di IFF integrato. Il sensore, che è sostanzialmente la versione fu capability della famiglia Seaspray 7000E (il Seaspray 7300E del ATR-72MP è esattamente analogo al modello in servizio sugli elicotteri britannici AW-159 Wildcat), ha capacità Track While Scan (TWS, che consente la sorveglianza sul mare) e Moving Target Indicator (MTI, che permette la sorveglianza su terra). Si tratta di un apparato che ha pure la possibilità di lavorare con l’immagine radar: ha infatti sia capacità ISAR (Inverse Synteti Aperture Radar), sia capacità SAR (Syntetic Aperture Radar).
Nel primo caso ciò significa che può ricavare l’immagine radar di un’unità navale, classificandola in modo automatico (nell’ambito del sistema ATOS), nel secondo caso può fare la mappatura del terreno e il profilo (“l’immagine radar") di bersagli terrestri di medie dimensioni come, per esempio, edifici. Infine, il sensore ha anche la possibilità di operare nelle modalità aria-aria e meteorologica.

Sensore elettro-ottico Star Safire 380 HD

Anteriormente al radar è installata una torretta elettro-ottica (nel mondo aeronautico spesso noto semplicemente come FLIR) da 15 pollici Star Safire 380 HD della Flir Systems: l’apparato è collocato in posizione centrale ed è dotato di diverse funzionalità. Essa dispone infatti di una camera termica, di una camera TV diurna a colori e di una telecamera a bassa luminosità. A questi apparati si aggiunge un telemetro laser, mentre sarebbe possibile aggiungere anche laser per l’illuminazione e la designazione degli obiettivi. Grazie a questo insieme di sensori, con la Star Safire è possibile identificare bersagli di superficie a breve e medio raggio, di giorno con ogni condizione di luce e con qualunque condimeteo oltre che di notte fornendo immagini e video digitali ad alta definizione agli operatori del sistema di missione ATOS. C’è da mettere in evidenza che, nel caso degli ATR-72 ASW turchi e degli ATR-42 MP della Guardia di Finanza, invece, i velivoli sono equipaggiati con torrette elettro-ottiche da 20 pollici collocate sempre ventralmente ma in una posizione laterale a causa delle loro maggiori dimensioni che non permetterebbero, data la limitata luce da terra della fusoliera, una soluzione installativa simile a quella dell'ATR-72MP.

AIS

Il velivolo è dotato di AIS (Automatic Identification System): si tratta di una specie di IFF applicato al mondo della navigazione marittima. Il sistema del ATR-72MP può operare in modalità trasmittente e ricevente facendosi identificare dalle altre piattaforme dotate di AIS (che possono essere navi, velivoli o elicotteri) e identificarle a propria volta.
L’AIS di cui è dotato il velivolo può anche essere impostato in modalità covert, totalmente passiva per raccogliere informazioni da chi è disposto a fornirle (capita infatti che ci siano unità navali con I’AIS, spento, manomesso o guasto, unità che sono spesso oggetto di attenzioni del velivolo). I dati raccolti possono essere correlati dal sistema di missione con quelli forniti dal radar Seaspray 7300E per costruire una tactical picture (normalmente aeronavale) della situazione.

ASARS DF

L’ASARS DF (Airborne Search and Rescue System Direction Finder) è un equipaggiamento progettato per le operazioni SAR e Combat SAR. Si tratta di un direction finder V/UHF che opera su 360º ed è un grado di individuare la direzione delle emittenti radio in un range che va da 30 MHz a 410 MHz. Grazie ad esso è anche possibile effettuare comunicazioni vocali utilizzando i transponder di emergenza dei naufraghi. Le informazioni dell’ASARS DF sono visualizzabili sia sulle consolle del sistema di missione ATOS, sia in cabina di pilotaggio sui display principali del cockpit.

ESM/ELINT sistema DASS

Come accennato, il velivolo dispone di un pacchetto ESM/ELINT (Electronic Support Measure/ELectronic INTelligence) che lo rende adatto ad effettuare missioni di intelligence elettronica sul mare e non solo. II sistema, che può operare con ogni tempo ed anche in un ambiente denso di sorgenti elettromagnetiche (e ricco pure di interferenze naturali), è denominato ELT-800 V2 e viene realizzato da Elettronica. Si tratta di un apparato che impiega un ricevitore digitale integrato e che costituisce la penultima generazione dei sistemi di questo tipo realizzati dall’azienda, ma anche quanto di più sofisticato disponibile all’epoca della concezione e della realizzazione del velivolo. ll sistema ha la capacità di scoprire, classificare ed identificare le emittenti radar a lungo raggio e con ogni tempo. La suite ESM utilizza 6 antenne collocate a coppie lungo la fusoliera: 2 nei pressi del muso, 2 nella zona posteriore e 2 nel "conetto" di coda vicino all’attacco per il MAD (non installato).
La componente ELINT utilizza invece 4 ulteriori antenne collocate sui lati della fusoliera, 2 sul lato destro e 2 su quello sinistro; anteriormente esse sono collocate in corrispondenza dei primi finestrini, mentre posteriormente sono subito dopo la bubble window. Le antenne garantiscono una copertura su 360º nelle bande basse e nelle bande di frequenza dalla 0 Mo alla J. Il sistema ESM con le sue 6 antenne riceventi ha un’alta probabilità di intercettare i singoli impulsi e le emissioni istantanee ed è in grado di individuare e classificare una sorgente elettromagnetica (radar) in modo molto rapido. Grazie alle 4 antenne supplementari, il sistema dispone come abbiamo visto anche di capacità ELINT, capacità che comprendono l’analisi "fine" del segnale, la sua impronta e la geolocalizzazione.
Il pacchetto ESM/ELINT è completamente integrato nell’ATOS ed è dotato di tools specifici dedicati proprio all’ELINT (tra cui, per esempio, sistemi per generare e gestire librerie). La suite ESM costituisce anche parte del sistema di autoprotezione del velivolo, denominata DASS (Defense Aids Sub – System) che è derivata da quella che equipaggia il velivolo da trasporto C-27J Spartan. La componente ESM ha dunque anche capacità di fare da Radar Warning Receiver e Missile Warning System, mentre il sistema è dotato anche di Laser Warning System. ll DASS comprende inoltre 6 lanciatori di chaff e flares collocati a coppie nel muso, nella zona posteriore e sul conetto di coda non lontano dalle antenne del sistema ESM. Proprio riguardo alla suite di autoprotezione, va detto che, in fase progettuale, è stato effettuato un lavoro di studio per integrare il DIRCM (Directional Infrared Counter Measures) di Elettronica sull'ATR-72MP. Tale apparato, però, non è stato poi acquisito. Anche senza DIRCM il velivolo è comunque dotato di un pacchetto di autoprotezione di tutto rispetto che lo rende idoneo ad operare in ambienti particolarmente difficili.

Comunicazioni integrate

L'ATR-72MP dispone di capacità di comunicazioni integrate molto evolute che lo rendono un nodo di comunicazione di primaria importanza nell’ambito di una rete networkcentrica in ambiente aeronavale. Oltre ai 6 apparati radio completamente integrati nel sistema ATOS, 2 radio HF per le comunicazioni a lunga distanza e 4 apparecchi V/UHF per le comunicazioni a distanze più ridotte (LOS, Line Of Sight) che sono anche in grado di trasmettere in modalità crypto. il velivolo dispone di capacità di comunicazioni satellitari, sia commerciali (Inmarsat) sia militari (mediante Sicral). Per quanto concerne le capacità Satcom a larga banda, uno degli elementi peculiari è rappresentato senza dub bio dal data link satellitare bibanda. L’antenna di tale sistema è collocata in un grosso radome posto sul dorso della fusoliera, subito dietro la giunzione con l’ala. Il sistema, realizzato in Italia, consente l’impiego sia della banda Ku (per la quale il velivolo si deve appoggiare a satelliti commerciali), sia della banda Ka (impiegando il satellite militare franco-italiano Athena-Fidus). Grazie a tale apparato e ai diversi data link (Link 11, Link 16) il velivolo può scambiare dati di missione con altri velivoli o navi amiche e con centri di controllo a terra.

Impiego operativo

ll 41º Stormo dell’Aeronautica Militare basato a Sigonella (CT) è destinato ad impiegare tutti e 4 i P-72A che l’ltalia ha deciso di acquisire come rimpiazzo dei 18 BR-1150 Atlantic utilizzati fino al 2016 per compiti di pattugliamento marittimo, SAR ed ASW. Tuttavia il velivolo costituisce una soluzione ad interim in attesa di una macchina più grande e prestante: ciò spiega anche i numeri così ridotti (solo 4 macchine che prendono il posto di 18 aerei), visto che, sia l’Aeronautica che la Marina, vorrebbero un velivolo della categoria del P-8 Poseidon. Così come è avvenuto con gli Atlantic anche i P-72A sono in carico all’Aeronautica Militare, ma vengono operati da equipaggi misti dell'AM e della MM. Il velivolo normalmente vola con un equipaggio di 8 persone, 2 piloti, 4 operatori alle consolle del sistema di missione ATOS (detti MSO, Mission System Operator) e 2 osservatori che stanno ai finestrini a bolla (per effettuare la ricerca a vista) e si occupano anche di aviolanciare gli equipaggiamenti di emergenza attraveso il portello apribile in volo. Degli 8 membri dell’equipaggio, 4 o 5 appartengono a personale dell’AM, mentre i restanti sono della MM, ma il numero e la composizione possono variare a seconda del profilo e della durata della missione.

Gli altri ATR-72 da pattugliamento / antisommergibile

Il primo cliente ad aver selezionato l’ATR-72 per compiti di pattugliamento marittimo, SAR ed ASW è stato la Turchia che al momento ha un programma, denominato Meltem III, relativo a 8 velivoli, 2 macchine tipo ATR-72-600 in configurazione utility (denominati TMUA Turkish Maritime Utility Aircraft), impiegati anche per scopi addestrativi ed in servizio al maggio 2019, e 6 ATR-72MP/ASW (denominati TMPA, Turkish Maritime Patrol Aircraft) tutti ancora da consegnare alla stessa data. Come noto, lo sviluppo di questo aereo si è rivelato più complesso e più lungo del previsto per diverse ragioni. Un primo ritardo si è accumulato a causa della decisione di passare dagli ATR-72-500 al nuovo ATR-72-600 senza che il nuovo standard, che ha rappresentato un vero salto in avanti generazionale, fosse sufficientemente maturo (all’epoca si parlava ancora di omologare il glass cockpit). In più l’integrazione del sistema di missione Amascos di Thales non è risultata per nulla semplice, così come tutt’altro che banali si sono rivelate anche le innumerevoli modifiche richieste alla cellula del velivolo per dotarlo dell’armamento e di tutti gli equipaggiamenti necessari alle operazioni antisommmergibile. Per tale ragione, a metà del 2019, il primo esemplare di ATR-72MP/ASW si trova ancora in Italia per completare le attività di certificazione e sviluppo. Gli altri 5 velivoli, invece, sono in fase di conversione, sempre partendo da cellule green in Turchia a cura della società TAI, azienda che ha sottoscritto, nell'ambito del programma Meltem III, un contratto di collaborazione con Leonardo Velivoli. L’ATR-72MP/ASW TMPA, rispetto al P-72A in carico all'Aeronautica militare italiana, dispone quindi di notevoli capacità ASW ma è privo di molte delle capacità di comando e controllo e di ricognizione della versione italiana. Tra le caratteristiche più significative del TMPA vi sono la presenza di 4 punti di attacco sotto la fusoliera in grado di portare circa 454 kg (1.000 libbre) ciascuno. Originariamente i travetti anteriori erano destinati al trasporto e allo sgancio dei siluri leggeri antisom da 324 mm (per una massa di circa 250 kg), mentre la coppia di hard point posteriori avrebbe dovuto trasportare le bombe di profondità (circa 160 kg). Mentre l’impiego dei 2 siluri in posizione anteriore (ordigni Mk-54 della statunitense Raytheon) è stato confermato, la Turchia ha deciso di rinunciare alle cariche di profondità (che operativamente hanno perso un po'la loro importanza). I 2 punti di attacco posteriori vengono mantenuti anche se non vengono certificati per alcun tipo di utilizzo: probabilmente in futuro si potrà utilizzarli per lo sgancio di mine navali o missili antinave.
Altro utente del velivolo e il Servizio aereo della Guardia di Finanza che nell’estate del 2018, infatti, ha ufficializzato la sottoscrizione di un contratto del valore di circa 44 milioni di euro per la fornitura del primo ATR-72 MP. Tale accordo costituisce la prima parte di un più ampio programma del valore di circa 250 milioni di euro per l’acquisizione di altri velivoli ATR-72 MP (dovrebbero essere complessivamente 4 macchine) con i quali sostituire i vecchi ATR-42 MP. L’ATR-72 MP della GdF non si dovrebbe discostare troppo dal velivolo dell’AM: mantiene l’area di coordinamento con tavolo tattico per 4 operatori, dispone di un sistema di missione ATOS con 3 consolle (anziché 4) ed è dotato di un’area passeggeri con 4 sedili. Il sistema di missione (tavolo tattico, consolle ed altri equipaggiamenti) può essere rimosso con facilità esattamente come accade sugli ATR-42 MP. La Guardia di Finanza considera anche i nuovi ATR-72MP dei velivoli Multi Purpose, Multi Ruolo, tanto è vero che sono previsti 5 allestimenti differenti. Oltre a quello da pattugliamento, il velivolo può essere trasformato in una versione mista da pattugliamento/trasporto (che comprende il tavolo tattic o a 4 posti, una consolle del sistema ATOS, 4 posti per far riposare l’equipaggio e 30 sedili per il trasporto passeggeri), una variante totalmente passeggeri (in grado di trasportare 48 persone), una versione cargo (capace di imbarcare pallet e altri carichi attraverso il portellone posto nella parte anteriore sinistra della fusoliera) e una variante MEDEVAC dotata di 12 barelle per il trasporto feriti (che in realtà, mantenendo una consolle di missione del sistema ATOS, conserva una certa capacità mista).
Diversa è la storia dei due ATR-72 MPa ordinati dalla Marina Militare pakistana. Questa, nel 2015, ha stipulato un contratto con Rheinland Air Service (RAS), un'impresa di manutenzione, riparazione e revisione aeronautica basata in Germania, per convertire due ATR-72 (acquistati di seconda mano) in pattugliatori marittimi con compiti di sorveglianza marittima, ASW ed anche SAR.[2] Gli esemplari pakistani, quindi, non provengono dalla linea di conversione della Leonardo Velivoli come gli esemplari italiani e turchi, ma dalla linea di conversione della tedesca Rheinald che ha curato la conversione della cellula, mentre il sistema di missione è stato fornito dalla Aerodata AG, uno dei subappaltatori coinvolti nel programma.[2] Questa è stata incaricata della fornitura del suo sistema di gestione delle missioni AeroMission, che funzionerà di concerto con il radar AESA Leonardo Seaspray 7300E, una suite di dispositivi elettronici di supporto elettronico ESM, una torretta elettro-ottica dotata di sitema FLIR Star Safire III e capacità antisommerginbile attraverso l'uso di siluri leggeri. Inoltre, gli MPA ATR-72 MPa sono stati anche configurati con una suite di autoprotezione che fornisce la difesa dalle munizioni a infrarossi, radar e laser, e anche di sistemi ELINT.

Versioni
  • ATR 72MP: Versione dell'ATR 72 per la sorveglianza (ISR) e il pattugliamento marittimo (MPA) sviluppata sulle specifiche dell'Aeronautica Militare Italiana.
  • ATR 72ASW: Versione dell'ATR 72 equipaggiata per il pattugliamento marittimo (MPA) e la lotta antisommergibile sviluppata sulle specifiche della Türk Donanma Havacılığı (l'aviazione navale della marina militare turca).

Utilizzatori

Governativi
  • Italia - Guardia di Finanza - 4 ATR 72MP ordinati con consegne tra fine 2019 ed il 2022. Ulteriori 3 aerei ordinati ad ottobre 2019 che portano a 4 gli esemplari da consegnare.

Militari
  • Italia - Aeronautica Militare - 4 ATR 72MP (ridesignati P–72A dalla forza aerea) ordinati (3 consegnati al dicembre 2018, l'ultimo in consegna nel 2019).
  • Pakistan - Pak Bahr'ya - 2 ATR 72 acquistati di seconda mano e convertiti in pattugliatori marittimi dalla Rheinland Air Service. A dicembre 2018 risulta consegnato il primo esemplare. A luglio 2019 consegnato il secondo ed ultimo esemplare.
  • Turchia - Türk Deniz Kuvvetleri - 6 ATR 72 TMPA (Turkish Maritime Patrol Aircraft, versione da pattugliamento marittimo e lotta antisommergibile).

ENGLISH

The ATR 72MP combines the reliability, maintainability, low life-cycle costs and high crew comfort levels of the commercial ATR 72-600 regional aircraft with a state-of-the-art mission system, advanced sensors and a complete communication suite, to create an effective and affordable force multiplier, with excellent Command, Control, Communication, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) capabilities, whilst retaining ample growth capability.

Main roles

The basic mission portfolio of the ATR 72MP includes all military maritime surveillance tasks; monitoring of sea lanes; fisheries protection; prevention/contrast of activities such as piracy, smuggling, drugs trafficking and illegal immigration; Exclusive Economic Zone (EEZ) patrol; Search And Rescue (SAR). The aircraft can also act as a flying command post and can double as a capable personnel transport asset in case of emergency.

ATOS

Core of the mission suite, the Leonardo’s Airborne & Space Systems Division ATOS (Airborne Tactical Observation and Surveillance) mission system manages the aircraft’s wide array of sensors, combines the information gathered in an overall tactical situation (data fusion), providing excellent situational awareness to the mission system operators (up to 4 state-of-the-art stations available).

Main sensors

The baseline configuration comprises: the advanced, long range, Leonardo’s Airborne & Space Systems Division Seaspray 7300E electronically-scanned array search radar; the FLIR Systems Star Safire 380 HD electro-optical turret; an Automatic Identification System (AIS) to locate and identify vessels equipped with AIS transponder; an Airborne Search And Rescue System Direction Finder (ASARS DF).

(Web, Google, Wikipedia, Leonardo, You Tube)































Nuvole di guerra si addensano al confine sud dell' impero ottomano


Come ampiamente preannunciato, sono iniziate le operazioni militari della Turchia nel nord-est della Siria contro le milizie curde. L’operazione del neo-sultano turco Recep Erdogan ha come obiettivo quello di creare "una zona di sicurezza" per Ankara al riparo dai curdi siriani. 
Nell'area, secondo il governo turco, potrebbero essere convogliati oltre tre milioni e 600mila profughi siriani oggi in territorio turco. 



A dare il via alle ostilità una serie di esplosioni vicino al confine: una importante arteria stradale e alcuni depositi di armi appartenenti ai curdi dello Ypg sono stati colpiti dai caccia F16 di Ankara, decollati dalla base di Diyarbakir, nel sud-est della Turchia. 



I velivoli NATO (sic!) hanno colpito Ras al Ayn, una delle due località abbandonate di recente dai marines statunitensi.
Molti civili sono in fuga ed anche i militari curdi che hanno abbandonato le carceri dove erano imprigionati i terroristi miliziani jihadisti dell'ex Stato Islamico. 



Era scontata la condanna (imbelle) dai vertici dell'Unione europea, dell'ex presidente della Commissione Ue Jean-Claude Juncker, del presidente del Parlamento europeo, David Sassoli, il quale si è dichiarato "molto preoccupato" e contrario "a qualsiasi azione unilaterale della Turchia che metterebbe a rischio la pace e arreca evidentemente ulteriori sofferenze alla popolazione civile già martoriata da anni di violenze e di sofferenze". 
Alcuni europarlamentari hanno chiesto "che la Nato, l'Unione europea e l'Italia non rimangano inerti osservatori, ma mettano in campo tutte le iniziative diplomatiche possibili…




























mercoledì 9 ottobre 2019

Prosegue senza soste la ricerca nel mondo sulla "FUSIONE NUCLEARE", il processo che alimenta le stelle. L'anno 2035 è sempre più vicino.


In fisica la fusione nucleare è il processo fisico nucleare ovvero una reazione nucleare attraverso il quale i nuclei di due o più atomi vengono avvicinati o compressi a tal punto da superare la repulsione elettromagnetica e unirsi tra loro generando il nucleo di un elemento di massa minore, o maggiore, della somma delle masse dei nuclei reagenti, nonché, talvolta, uno o più neutroni liberi.
La fusione di elementi fino ai numeri atomici 26 e 28 (ferro e nichel) è una reazione esotermica, cioè emette energia essendovi una perdita di massa; per numeri atomici superiori la reazione è endotermica, assorbendo energia per la costituzione di nuclei atomici di massa maggiore.
Il processo di fusione è il meccanismo che alimenta le stelle. La fusione è stata riprodotta artificialmente con la realizzazione della bomba H. Studi sono in corso per riprodurre a fini energetici fenomeni di fusione nucleare controllata in reattori nucleari a fusione.


Cenni storici

Partendo dagli esperimenti sulla trasmutazione nucleare di Ernest Rutherford, condotti parecchi anni prima, la fusione in laboratori di isotopi pesanti dell'idrogeno fu realizzata per la prima volta da Mark Oliphant nel 1932. Durante il resto di quel decennio gli stadi del ciclo principale della fusione nucleare nelle stelle furono ricavati da Hans Bethe. Le ricerche sulla fusione per scopi militari cominciarono all'inizio degli anni quaranta come parte del Progetto Manhattan, ma questo fu realizzato solo nel 1951 (vedi il test nucleare del Greenhouse Item), e la fusione nucleare su vasta scala in un'esplosione fu eseguita per la prima volta il 1º novembre 1952, nel test sulla bomba a idrogeno denominato Ivy Mike.
Le ricerche sullo sviluppo della fusione termonucleare controllata per scopi civili cominciarono anch'essi seriamente negli anni cinquanta, e continuano ancora oggi. Due progetti, il National Ignition Facility e l'ITER sono in corso per raggiungere l'obiettivo dopo 60 anni di miglioramenti dei modelli sviluppati dai precedenti esperimenti. Anche l'Italia sta studiando la possibilità di realizzare un reattore sperimentale a fusione nucleare con confinamento magnetico. Il progetto in questione si chiama IGNITOR ed è stato realizzato dall'ENEA; pur essendo ormai il progetto in fase avanzata, la sua costruzione non è ancora cominciata.

Applicazioni

La bomba termonucleare

Come è noto l'uomo ha riprodotto, nella seconda metà del XX secolo, la fusione termonucleare a scopi militari nella bomba all'idrogeno dove la temperature necessarie alla fusione nucleare sono innescate da una precedente reazione a fissione nucleare, ottenendo un'arma nucleare di eccezionale potenza e distruttività, finora mai utilizzata su un obbiettivo civile, ma solo sperimentata in appositi siti di test.

La fusione come fonte di energia

Negli ultimi sessant'anni è stato profuso un notevole sforzo teorico e sperimentale anche per mettere a punto la fusione nucleare per scopi civili anziché bellici ovvero per generare elettricità e anche come sistema di propulsione per razzi, ben più efficiente dei sistemi basati su reazioni chimiche o sulla reazione di fissione.
Al momento il progetto più avanzato verso la realizzazione di energia elettrica da fusione è ITER: un reattore a fusione termonucleare (basato sulla configurazione di tipo tokamak). ITER è un progetto internazionale cooperativo tra Unione europea, Russia, Cina, Giappone, Stati Uniti d'America, Corea del Sud e India. ITER però non è ancora il prototipo di centrale di produzione di energia elettrica ma solo una macchina sperimentale destinata a dimostrare di poter ottenere le condizioni di guadagno energetico necessarie. DEMO è invece il prototipo di centrale in fase di studio dagli stessi partecipanti al progetto ITER.
Per spingere atomi di idrogeno a fondere in maniera controllata all'interno di un reattore o, più in generale, di una camera, il combustibile deve essere innanzitutto confinato spazialmente attraverso opportune tecniche, al fine di conferire a esso le caratteristiche fisiche ideali espresse nel criterio di Lawson.

Confinamento inerziale

Il combustibile nucleare può essere compresso all'ignizione con un bombardamento di fotoni, di altre particelle o tramite un'esplosione. Nel caso dell'esplosione, il tempo di confinamento risulterà essere abbastanza breve. Questo è il processo usato nella bomba all'idrogeno, in cui una potente esplosione provocata da una bomba a fissione nucleare comprime un piccolo cilindro di combustibile per fusione.
Nella bomba all'idrogeno, l'energia sviluppata da una bomba nucleare a fissione viene utilizzata per comprimere il combustibile, solitamente un miscuglio di deuterio e trizio, fino alla temperatura di fusione. L'esplosione della bomba a fissione genera una serie di raggi X che creano un'onda termica che propagandosi nella testata comprime e riscalda il deuterio e il trizio generando la fusione nucleare.
Altre forme di confinamento inerziale sono state tentate per i reattori a fusione, incluso l'uso di grandi laser focalizzati su una piccola quantità di combustibile, o usando gli ioni del combustibile stesso accelerati verso una regione centrale, come nel fusore di Farnsworth-Hirsch o nel fusore Polywell.

Ricerche sulla fusione nucleare boro-protone a confinamento laser

Nel 2004 scienziati russi, diretti da Vladimir Krainov, riescono a produrre una reazione di fusione nucleare controllata innescata dal confinamento laser, tra protoni (atomi d'idrogeno privi dell'elettrone) e atomi di boro, alla temperatura di 1 miliardo di kelvin, senza emissione di neutroni e particelle radioattive, a esclusione di particelle alfa. Ma l'energia richiesta dal laser supera di molto quella prodotta dalla reazione.
Nel gennaio 2013, un gruppo di ricercatori italiani e cechi diretti dal Dr. Antonino Picciotto (Micro-nano facility, Fondazione Bruno Kessler, Trento) e dal Dr. Daniele Margarone (Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic) hanno ottenuto il record di produzione di particelle alfa (10^9 per steradianti) senza emissione di neutroni, utilizzando per la prima volta un target di silicio-boro-idrogenato ed un laser con intensità 1000 volte inferiore rispetto agli esperimenti precedenti.

Confinamento magnetico

Un plasma è costituito da particelle cariche che possono quindi essere confinate da un appropriato campo magnetico. Sono noti molti modi di generare un campo magnetico in grado di isolare un plasma in fusione; tuttavia, in tutte queste configurazioni, le particelle cariche che compongono il plasma interagiscono inevitabilmente con il campo, influenzando l'efficienza del confinamento e riscaldando il sistema. Due sono le geometrie che si sono rivelate interessanti per confinare plasmi per fusione: lo specchio magnetico e il toro magnetico. Lo specchio magnetico è una configurazione "aperta", cioè non è chiusa su sé stessa, mentre il toro (una figura geometrica a forma di "ciambella") è una configurazione chiusa su sé stessa intorno a un buco centrale. Varianti del toro sono le configurazioni sferiche, in cui il buco al centro del toro è di dimensioni molto ridotte ma pur sempre presente.
Ognuno di questi sistemi di confinamento ha diverse realizzazioni, che differiscono tra loro nell'enfatizzare l'efficienza del confinamento o nel semplificare i requisiti tecnici necessari per la realizzazione del campo magnetico. La ricerca sugli specchi magnetici e su altre configurazioni aperte (bottiglie magnetiche, "pinch" lineari, cuspidi, ottupoli, ecc.) ha avuto un grande sviluppo negli anni 1960-1970, poi è stata abbandonata per le inevitabili perdite di particelle agli estremi della configurazione. Invece, una variante dei sistemi toroidali, il tokamak, è risultato essere una soluzione inizialmente più semplice di altre per un'implementazione da laboratorio. Ciò, assieme a una prospettiva remunerativa futura, l'ha reso il sistema su cui la ricerca scientifica in questo settore ha mosso i suoi passi più significativi. Attualmente il più promettente esperimento in questo campo è il progetto ITER. Esistono comunque delle varianti di configurazioni toroidali, come lo stellarator (che è caratterizzato dall'assenza di un circuito per generare una corrente nel plasma) e il Reversed-field pinch (RFP).
Nel 2009 usando la macchina RFX a Padova è stato dimostrato sperimentalmente che, in accordo con quanto previsto da un modello matematico, si può migliorare il confinamento dando al plasma presente nel Reversed Field Pinch una forma a elica.




LA RICERCA IN ITALIA

La fusione nucleare è ancora considerata da molti come un sogno irrealizzabile. Eppure, la ricerca di questa forma di energia illimitata e pulita continua, anche in Italia. 
Di recente, un gruppo di ricercatori del Plasma Science and Fusion Center (PSFC) del MIT ha fondato la start-up Commonwealth Fusion Systems (CFS) con l'obiettivo di costruire un prototipo di centrale elettrica industriale entro 15 anni. In Italia, a Frascati è stata avviata la costruzione dell’ esperimento DTT che avrà una funzione di collegamento tra l’esperimento ITER (International Thermonuclear Experimental Reactor), in costruzione in Francia, e il prototipo di reattore DEMO. L'Italia è impegnata nel progetto CFS con l'Eni, che ha investito 50 milioni di dollari, e nel progetto internazionale di ITER, con commesse industriali che hanno già raggiunto un miliardo di euro sui 2,4 necessari.
La domanda che ci si pone è se, alla luce degli ultimi sviluppi, valga la pena investire così tante risorse nella ricerca sulla fusione. La risposta non può prescindere da considerazioni sulla crescita della popolazione mondiale e il suo fabbisogno energetico. 
Il numero di individui sul pianeta raggiungerà i dieci miliardi intorno al 2050 e i 12 intorno al 2100 con un tenore di vita che tenderà a uniformarsi agli standard più elevati . Per il 2100 si prevede un consumo di energia tra il doppio e il quintuplo di quello attuale con crescite rilevanti del consumo di energia elettrica, visto che il 75 per cento della popolazione vivrà in città. In particolare, l' IEA (International Energy Agency) prevede che il fabbisogno energetico sia destinato ad aumentare del 30% da oggi al 2040 e che le energie verdi copriranno solo il 40 per cento della domanda globale. Parallelamente, il problema delle scorie e il pericolo del terrorismo continueranno a pesare sullo sviluppo dell'energia nucleare da fissione la cui percentuale nella generazione globale salirà dal 15 per cento del 2010 al 20 per cento del 2040.
Le ricerche sulla fusione rappresentano la speranza di un metodo di produzione dell'energia che non produce scorie ed effetto serra e si basa su un combustibile praticamente inesauribile e a basso costo. Infatti la fusione nucleare è una reazione in cui due nuclei leggeri come deuterio e trizio entrano in collisione e si fondono per formarne di più pesanti liberando notevole energia: l'opposto di quanto accade nel processo di fissione dove un atomo pesante bombardato da un neutrone si divide in due atomi più leggeri. Perché la reazione di fusione si verifichi è necessario che la miscela deuterio-trizio si trovi a temperatura elevatissima, superiore a 100 milioni di gradi centigradi. 
A quella temperatura la materia si trova nello stato di plasma. Per confinare il plasma in un reattore si è seguito il metodo del “confinamento magnetico”, cioè si è sfruttato il fatto che un campo magnetico forza le particelle del plasma a restare confinate. La macchina Tokamak, concepita per la prima volta all'Istituto Kurchatov di Mosca e i cui principi furono condivisi con gli scienziati occidentali nonostante la guerra fredda, sfrutta in modo efficiente esattamente questo principio.
Nel 1992 è stata realizzata la prima reazione di fusione controllata, che ha prodotto per un solo secondo una potenza di 1,7 megawatt, la ricerca si è concentrata sul confinamento magnetico. Il disegno ingegneristico di ITER si è concluso nel 2000 ma la costruzione del reattore che produca più energia di quanta il processo ne consumi per l'innesco e il sostentamento della reazione deuterio-trizio è in corso in Francia, a Cadarache. L'obiettivo finale è quello di ottenere dieci volte la potenza iniettata; in pratica occorre riscaldare il plasma e iniettare potenza sia con onde elettromagnetiche sia con fasci di particelle. L’obiettivo è iniettare 50 megawatt di potenza per estrarne 500. ITER deve ottenere questo risultato per dimostrare la fattibilità scientifica e tecnologica del principio.
La complicazione nasce dallo stretto intreccio tra plasma e macchina e dalla sfida tecnologica che pongono la realizzazione di molti componenti, come i superconduttori di grandi dimensioni, e la loro integrazione con le altre tecnologie.
Sono ancora da risolvere vari problemi prima del reattore:
Il primo riguarda la gestione del calore con quello che si chiama divertore, un componente del reattore sul quale viene deviato il plasma che sfugge ai campi magnetici; 
il secondo sono i materiali che resistano alle condizioni del reattore;
il terzo è il problema delle interruzioni repentine del funzionamento e del conseguente enorme stress meccanico a cui è sottoposto il reattore; 
infine occorre migliorare l'efficienza di tutti i componenti.
Il consorzio europeo punta a completare il reattore ITER per il 2025 in modo da iniziare le operazioni con le reazioni a fusione per il 2035. Successivamente, per il 2050, verrà realizzato DEMO, un reattore che dovrà dimostrare la possibilità di sostenere una reazione di fusione per un tempo lungo, di almeno 1000 secondi, con produzione di energia elettrica in rete. In breve, DEMO sarà uno sviluppo di ITER in grado di mantenere la reazione per un tempo maggiore. 
La ricerca europea punta anche sullo Stellarator, basato su su un concetto alternativo a quello di Tokamak, per confinare il plasma in modo stazionario.
Il progetto con CFS al quale partecipa l'Eni ha il vantaggio di puntare a un reattore più piccolo e di coinvolgere un minor numero di partecipanti. Sarà completato in circa 15 anni. 

La sua realizzazione prevede tre fasi: 
  • lo sviluppo di magneti superconduttori ad alta temperatura, 
  • la costruzione di un dispositivo sperimentale con produzione energetica positiva;
  • la gestione del primo impianto industriale per la produzione di energia da fusione continua. 
Il punto chiave di questo progetto sta proprio nei superconduttori. Rispetto a quelli di ITER, i superconduttori del progetto con CFS possono lavorare a temperatura più alta e ciò permetterà una gestione dell'energia più efficiente, aprendo la strada a rettori circa dieci volte più piccoli.
Il futuro prossimo sarà fondamentale per identificare le soluzioni progettuali necessarie per sfruttare le conoscenze tecnologiche accumulate fino ad ora.




LA RICERCA NEGLI U.S.A.

Il progetto della società statunitense Lockheed Martin di sviluppare un reattore a fusione nucleare compatto (CFR, Compact Fusion Reactor) per produrre energia pulita e virtualmente illimitata sta per arrivare a una seconda, decisiva fase: la costruzione, avviata dal Skunk Works Team a Palmdale (California), di un reattore di prova più potente dell'attuale prototipo. 
A differenza di ciò che avviene nelle centrali nucleari in funzione nel mondo, che per produrre energia sfruttano la fissione (il processo fisico-nucleare per il quale il nucleo atomico di un elemento chimico pesante viene spezzato in nuclei più leggeri), la fusione nucleare mira a produrre energia dalla fusione (appunto) di elementi leggeri (idrogeno, deuterio, trizio), in un processo che, a regime, ha un basso impatto ambientale rispetto al nucleare tradizione - perché non ha scorie radioattive a lunga vita (come invece ha la fissione). 
Alla fusione stanno lavorando numerose nazioni del pianeta, anche con progetti faraonici come ITER (International Thermonuclear Experimental Reactor, in Francia) e NIF (National Ignition Facility, Usa): entrambi progetti che sono in realtà "consorzi internazionali" di scienziati, tecnologie e investitori, ai quali spesso i vari Paesi partecipano con ricerche e sperimentazioni di parti del progetto complessivo, come nel caso dell'Italia e del Giappone con il reattore sperimentale JT-60SA (Japan Torus-60), nell'ambito dello sviluppo di ITER.
Le difficoltà da superare per arrivare a una fusione che si mantienga nel tempo senza apporto di energia esterna, sono numerose, ma semplificando di molto possiamo riassumerle in due: 
  • le temperature necessarie ad arrivare allo stato di plasma (non potendo avere, sulla Terra, pressioni anche solo lontanamente comparabili a quelle di una stella, dobbiamo compensare elevando la temperatura fino a centinaia di milioni di gradi); 
  • il contenimento del plasma portato a quelle temperature, affinché non tocchi le pareti del reattore (che non reggerebbero), mediante tecnologie di confinamento magnetico (progetti di tipo ITER) oppure "a sospensione" mediante centinaia di laser che tengono il plasma a mezz'aria (progetti di tipo NIF).
LA RICERCA IN RUSSIA

Uno dei settori energetici più promettenti è quello della fusione nucleare. In questo settore da circa 50 anni lavorano quasi tutte superpotenze del mondo. L’avvio del primo reattore termonucleare T-15MD nella Russia contemporanea è previsto per dicembre 2020.
Secondo la rivista Issues of Atomic Science and Technology, la costruzione di un impianto a fusione nucleare è in corso presso il Centro di ricerca nazionale dell'Istituto Kurchatov. Nel 2019 verranno installati il sistema magnetico e la camera del vuoto, elementi chiave della struttura. Caratteristiche importanti del T-15MD sono l'assenza di materiali superconduttori e un proflo basso, ovvero la sua camera ha una forma simile a quella sferica.
Tali soluzioni tecniche consentono di rendere il reattore più economico e facile da costruire e da utilizzare, nonché di ottenere parametri del plasma tipici di installazioni molto più grandi. La produzione di energia per i moderni reattori termonucleari è ancora tecnicamente impossibile, quindi il T-15MD fungerà da banco di prova per compensare il ritardo degli scienziati, degli ingegneri e dei tecnici russi rispetto alle loro controparti straniere.
Un altro compito importante della nuova installazione sarà quello di condurre vari esperimenti prima di essere eseguiti sull’ITER, il più grande progetto internazionale di un tokamak (il nome della macchina in via di sperimentazione, inventata dai fisici russi, in grado di creare una fusione nucleare al suo interno ed estrarre energia da essa), di cui la Russia è un partecipante.
L'Unione Sovietica era tra i pionieri dell'energia termonucleare, ma negli ultimi 20 anni non c'è stato quasi nessun lavoro per costruire reattori sperimentali. Uno dei pochi grandi progetti costruiti è il Tokamak Globus-M a schema sferico, inaugurato nel 1999 allo Ioffe Institute di San Pietroburgo.



LA RICERCA IN CINA

A novembre 2018, un gruppo di ricercatori cinesi ha annunciato che il reattore sperimentale East (Experimental Advanced Superconducting Tokamak, un "sole artificiale" progettato per imitare il processo di fusione nucleare che il Sole utilizza per generare energia) aveva raggiunto la temperatura di oltre 100 milioni °C, una tappa fondamentale nel raggiungimento della fusione nucleare sulla Terra. 
Recentemente alcuni funzionari cinesi hanno annunciato che la costruzione del reattore EAST per la fusione nucleare verrà terminata quest'anno. Il dispositivo sarà in grado di raggiungere un’altra tappa fondamentale nella temperatura ionica — un altro passo in avanti per sfruttare il potere della fusione nucleare per produrre energia pulita.
Duan Xuru, funzionario presso la China National Nuclear Corporation, durante la sessione annuale della conferenza consultiva politica del popolo cinese ha annunciato che gli ingegneri finiranno la costruzione del reattore Tokamak HL-2M nel 2019.
Il plasma del sole artificiale è composto principalmente da elettroni e ioni e i dispositivi tokamak esistenti della Cina hanno raggiunto una temperatura degli elettroni di oltre 100 milioni °C nel plasma principale e una temperatura degli ioni di 50 milioni °C, sono gli ioni che generano energia nel dispositivo.
Il tokamak HL-2M sarà in grado di raggiungere una temperatura di 100 milioni °C, un valore circa sette volte più elevato della temperatura raggiunta dal Sole. Si tratta di una delle tre sfide per raggiungere l'obiettivo di sfruttare la fusione nucleare.
In caso di successo il dispositivo potrebbe fungere da modello per i futuri reattori di fusione nucleare, il sogno di energia pulita illimitata potrebbe diventare un po’ più reale.

LA RICERCA IN GERMANIA

Wendelstein 7-X (W7-X) è uno stellarator (reattore nucleare a fusione) costruito a Greifswald, in Meclemburgo (Germania), dal Max-Planck-Institut für Plasmaphysik (IPP), la cui realizzazione, ultimata nel maggio del 2014, ha richiesto nove anni per oltre un milione di ore uomo, ed un miliardo di euro spesi.
Dalla data di fine costruzione, lo stellarator è stato sottoposto a una serie di test che hanno verificato la corrispondenza del campo magnetico prodotto con quello desiderato (aspetto particolarmente delicato per uno stellarator), pertanto, dopo il parere favorevole degli enti di controllo, ne è stata approvata l'accensione nel dicembre 2015.
Il 10 dicembre 2015 lo stellarator ha prodotto il primo plasma usando il gas elio. Il plasma ha avuto una durata di un decimo di secondo ed ha raggiunto la temperatura di circa un milione di gradi centigradi.
Il 3 febbraio 2016 è stato prodotto il primo plasma usando il gas idrogeno. Questa volta la temperatura raggiunta è stata di 80 milioni di gradi per una durata di un quarto di secondo.
Nel marzo 2016 si è conclusa con successo la prima fase sperimentale. Fino alla metà del 2017 è prevista un fase di aggiornamento della struttura dello stellarator (modifica del divertore e installazione di piastrelle di protezione del recipiente in grafite) che consentirà di iniziare una seconda fase di sperimentazioni con una maggior potenza di riscaldamento e una maggior durata del plasma.
Nel giugno/novembre del 2018 si sono concluse diverse fasi sperimentali prima di fermare la macchina per ulteriori aggiornamenti. Sono stati ottenuti diversi record per gli stellarator per la densità del plasma (2 x 10^20 particelle per metro cubo) e per l'energia contenuta nel plasma che ha superato il mega joule. Il plasma ha raggiunto temperature fino a 40 milioni di gradi centigradi con impulsi della durata fino a 100 secondi. Attualmente lo stellarator è fermo per aggiornamenti che prevedono la sostituzione delle piastrelle del rivestimento interno con piastrelle in carbonio rinforzate con fibra di carbonio e raffreddate ad acqua. L'obbiettivo è di ottenere una durata del plasma fino a 30 minuti e una maggior energia senza surriscaldare il contenitore. Questi aggiornamenti fermeranno la macchina per circa due anni.
Gli stellarator sono macchine costruite per studiare la produzione di plasmi destinati a dimostrare la fattibilità della fusione termonucleare controllata utilizzando, a differenza dei tokamak, un campo magnetico che si adatti al plasma (cioè non forzando il plasma ad adattarsi al campo magnetico), ciò è ottenuto generando una corrente di plasma priva di campo magnetico proprio[6]. In questo modo si ottiene automaticamente un plasma stabile, quindi operabile in stato stazionario. Il problema degli stellarator, nei confronti dei tokamak, è la geometria dei magneti, che non possono essere più modulari, ma, dovendo seguire l'evoluzione del plasma, sono differenti a seconda della posizione sulla periferia della macchina. In genere gli stellarator sono costituiti da un certo numero di moduli, ognuno dei quali ha diversi magneti ognuno di forma differente dall'altro.
Gli stellarator Wendelstein
Gli stellarator della serie Wendelstein sono stati costruiti dal Max Planck Institut fur Plasmaphysik (IPP).
Il primi della serie furono: WI-A, WI-B, WII-A, WII-B; a cui seguì il primo W7-A.
Fece seguito il Wendelstein 7 AS (AS stava per "Advanced Stellarator") ed operò dal 1988 al 2002 dall'IPP nei laboratori a Garching, a pochi chilometri da Monaco. Dai risultati degli esperimenti con Wendelstein 7 AS fu deciso di sviluppare un nuovo stellarator (Wendelstein 7-X) a Greifswald, nella Pomerania. Questa nuova macchina è destinata a dimostrare la stabilità del plasma generato dagli stellarator. Lo stellarator di Wendelstein 7-X è composto da 70 magneti superconduttori organizzati su cinque moduli strutturali e deve intrappolare il plasma riscaldato a più di 100 milioni di gradi centigradi, sette volte la temperatura nel nucleo solare.
Lo scopo della sperimentazione sullo stellarator Wendelstein 7-X è fornire i dati necessari alla valutazione dell'equilibrio del plasma sotto diversi aspetti (magnetoidrodinamico, influenza dei nuclei pesanti sulla stabilità del plasma), collisioni e trasporto turbolento, fisica tridimensionale del bordo del plasma (trasporto al divertore), riscaldamento e modelli di scenario.

LA RICERCA IN GRAN BRETAGNA

Il Regno Unito è riuscito nell’impresa di produrre il “primo plasma”, generando con successo per la prima volta un plasma caricato elettricamente nel suo nucleo. Il reattore in questione è il ST40, e la fusione nucleare è sempre più vicina.
Lo scopo è quello di utilizzare un reattore tokamak per riscaldare tale plasma ad una temperatura di circa 100 milioni di gradi Celsius, il ché rappresenta all’incirca 7 volte la temperatura raggiunta nel centro del sole. Per questo reattore tale è la temperatura necessaria affinché gli atomi di idrogeno si uniscano a formare elio, scatenando un’energia pressoché infinita e pulita.
“Oggi è un giorno importante per lo sviluppo dell’energia tramite la fusione nucleare, nel Regno Unito e nel mondo” ha dichiarato David Kingham, CEO di Tokamak Energy, società dietro la ST40.
“Stiamo svelando il primo dispositivo di fusione nucleare a livello mondiale, progettato, costruito e gestito da un’impresa privata. Lo ST40 è una macchina che mostrerà come le temperature di fusione – 100 milioni di gradi – sono possibili in reattori compatti e convenienti. Ciò permetterà di sfruttare la fusione nucleare in anni, non decenni “.
La fusione nucleare è il processo che alimenta il Sole, e nel caso riuscissimo a trovare un modo di riprodurre tale fenomeno sulla Terra, saremmo in grado di ottenere una fornitura di energia pressoché illimitata, il tutto senza emissione di carbonio. Difatti a differenza della fissione nucleare ( del quale andremo presto a parlare ), la fusione nucleare avviene grazie alla fusione di due atomi, e non grazie alla loro separazione, e non richiede come materia prima più che sale ed acqua. Altra grande nota di merito di tale possibile tecnologia è che gli unici prodotti di scarto saranno rappresentati dall’elio.
Purtroppo tale reazione non è semplice da riprodurre, e gli scienziati stanno lottando davvero molto per riuscire ad attuarla.
Il processo prevede l’utilizzo di magneti ad alta potenza per controllare il plasma a temperature incredibili, per abbastanza tempo da generare una quantità utile di energia.
Nell’ultimo anno sono però stati compiuti grandi passi in avanti. Gli scienziati del MIT hanno rotto il record per la pressione del plasma nel mese di ottobre, e nel mese di dicembre i ricercatori sudcoreani sono diventati i primi a mantenere il plasma fino a 300 milioni di gradi Celsius per 70 secondi.
Ma siamo ancora molto lontani dall’essere in grado di mettere insieme tutti questi pezzi. Trovare un modo conveniente per generare plasma alle temperature richieste per la fusione e poi essere in grado di sfruttarlo per abbastanza tempo per generare energia non è propriamente semplice.
ST40 è il cosiddetto reattore tokamak, che utilizza bobine magnetiche ad alta potenza per controllare un nucleo di plasma scottante in forma toroidale. 
Il passo successivo è quello di montare una serie completa di queste bobine all’interno dell’ST40, e più tardi Tomakaw Energy li userà per puntare a generare un plasma a temperatura stabile di 15 milioni di gradi.
Nel 2018 il team auspica a raggiungere la soglia di fusione di 100 milioni di gradi Celsius, ed il loro obbiettivo ultimo è quello di provvedere al fabbisogno nazionale inglese entro il 2030.
Sia quel che sia, l’azienda ora è un passo più vicino, e non essendo gli unici con un reattore Tokamaw in sviluppo, essi velocizzeranno solamente il processo affinché il primo reattore a fusione nucleare sia ufficialmente attivo.


LA RICERCA IN FRANCIA

Il reattore a fusione nucleare ITER inizia a prendere forma. A Saint Paul Lez Durance, in Francia, colpisce la dimensione del cantiere polveroso fra le creste calcaree della Provenza, in cui gli operai dispongono ad anello immense lastre di cemento.
Più sopra si è accennato al progetto ITER (International Thermonuclear Expermental Reactor) su cui stanno investendo diversi paesi del mondo alla ricerca di energia pulita, economica e sicura. Un progetto ambizioso a cui prende parte anche l'Italia, con l'azienda ASG Superconductors di Genova a cui è affidata la produzione di 10 dei 19 magneti che dovranno creare il campo di confinamento. Si tratta di un reattore di tipo tokamak, quasi come il Wendelstein 7-X stellarator che è da poco stato acceso in Germania.
Come l'impianto tedesco non è una centrale di produzione di energia elettrica. Allo stato attuale si tratta più che altro di un enorme, ed enormemente complesso e costoso, esperimento di Fisica. Se tutto andrà secondo i piani entrambi gli impianti saranno gli antesignani delle centrali elettriche del futuro – e fra l'altro daranno un grande contributo alla riduzione delle emissioni che provocano il surriscaldamento globale.
Se solo fra molti anni beneficeremo direttamente di questo investimento, al momento il loro ruolo è comunque ambizioso sul piano scientifico: testare la fusione nucleare, ossia la reazione atomica che avviene nel Sole (e in generale nelle stelle), e riuscire a controllarla per generare energia.
Per chiarezza, ITER non produrrà elettricità ma calore, che successivamente si può trasformare in energia elettrica – molto più semplice da trasportare e utilizzare. Semplificando al massimo, il metodo è quello che vi avevamo già spiegato in passato: la produzione di energia avviene per mezzo della fusione di atomi di deuterio e trizio, due isotopi dell'idrogeno, allo stato di plasma (un gas a temperature comprese fra 100 e 150 milioni di gradi) confinato in giganteschi magneti. 
Finora sono stati condotti esperimenti di fusione più piccoli che hanno funzionato. L'esperimento tedesco ha prodotto il primo plasma di idrogeno con un impulso di due megawatt di radiazioni a microonde, e riscaldato il gas di idrogeno fino a 80 milioni di gradi per un quarto di secondo. La tabella di marcia prevede poi l'incremento della potenza di riscaldamento a microonde del plasma fino a 20 megawatt, per un tempo massimo di 30 minuti. Solo a partire dal 2019 si faranno reazioni di fusione impiegando anche il deuterio. Per ottenere una produzione di energia tuttavia occorre produrre più energia di quanta l'impianto ne consumi, e nel caso dello stellerator tedesco i responsabili hanno già anticipato che le prime reazioni di fusione non saranno sufficienti a fornire più energia di quanta se ne consumerà.
Insomma il cammino da percorrere è lungo, ma la buona notizia è che il progetto di ITER ha progredito a singhiozzo per anni, fra problemi di progettazione e di gestione che hanno portato a lunghi ritardi e alla lievitazione dei costi. Ora sta finalmente decollando, sotto la guida del direttore generale Bernard Bigot, che si è preso carico di questa sfida più di due anni fa e che dopo una fase critica di avvio ha dichiarato al New York Times che i lavori procedono "a pieno ritmo e stanno accelerando".
Una volta terminata, la struttura avrà un diametro di circa 30 metri e un'altezza analoga, più grande del Wendelstein 7-X, che consiste in un dispositivo di forma toroidale con larghezza di 16 metri. La dimensione potrebbe fare la differenza, perché i fisici si aspettano che ITER benefici della sua ampiezza per produrre – una vola a regime – circa 10 volte più energia di quanta ne consuma.

Il "primo plasma" composto da idrogeno puro (senza deuterio, senza reazioni di fusione) dovrebbe essere generato da ITER fra otto anni, sempre che il progetto non subisca altri ritardi. La prima fusione con deuterio e trizio, che forse potrebbe essere protratta per sei o sette minuti, non avverrà prima del 2035.

(Web, Google, Wikipedia, You Tube)