domenica 18 ottobre 2020

La variante KF41 del "Lynx" è un veicolo da combattimento corazzato sviluppato dalla Rheinmetall Landsysteme


Il Lynx è un veicolo da combattimento corazzato sviluppato dalla Rheinmetall Landsysteme (parte della divisione Vehicle Systems di Rheinmetall). Il Lynx, configurato come veicolo da combattimento della fanteria (IFV) KF31, è stato presentato pubblicamente alla mostra di difesa Eurosatory il 14 giugno 2016. 


La variante KF41 è stata svelata pubblicamente alla mostra di difesa Eurosatory il 12 giugno 2018. Secondo Rheinmetall, la famiglia di veicoli corazzati cingolati Lynx è in prima linea in una nuova tendenza nella progettazione IFV verso veicoli blindati con costi unitari e di durata inferiori e complessità ridotta. Uno dei principi chiave del concetto Lynx è l'integrazione di sottosistemi collaudati con un livello di prontezza tecnologica elevato per ridurre i tempi di sviluppo, i costi e il rischio tecnico.


Sviluppo

La famiglia Lynx è stata progettata come veicolo blindato cingolato altamente protetto per colmare una lacuna identificata nel mercato dalla Rheinmetall. Il Lynx è stato progettato privatamente dalla Rheinmetall per fornire ai clienti un moderno veicolo da combattimento per la fanteria che sarà in grado di contrastare l'emergere di nuove minacce mantenendo la capacità di condurre operazioni asimmetriche o di mantenimento della pace. È stato mostrato pubblicamente per la prima volta nel giugno 2016 e nella configurazione più leggera KF31.


Il 4 giugno 2018 Rheinmetall ha emesso un comunicato stampa in cui informava che il più grande Lynx KF41 avrebbe debuttato due volte in diverse configurazioni alla prossima mostra di difesa. Dopo la presentazione in configurazione IFV il 12 giugno, il veicolo è stato riconfigurato come variante di comando, che è stata svelata il 13 giugno. La prima configurazione sarebbe come un veicolo da combattimento di fanteria con la nuova torretta LANCE 2.0, e poi, dopo il rimontaggio in loco, configurato come variante di comando.
A partire da maggio 2020 Rheinmetall aveva confermato che la società aveva proposto il Lynx in Australia, Repubblica Ceca e Stati Uniti. Inoltre, e secondo le trascrizioni delle chiamate degli investitori della primavera 2020, la società sarebbe stata nella fase finale dei negoziati con l'Ungheria in merito a un ordine di IFV per un valore di oltre 2 miliardi di euro (2,3 miliardi di dollari a maggio 2020), questi 210-220 esempi di Lynx. Rheinmetall ha annunciato formalmente un ordine ufficiale del governo ungherese il 10 settembre 2020 per 218 Lynx, confermando l'Ungheria come primo utente del tipo.


Design

Il Lynx è costruito attorno a uno scafo a forma di sponson con uno spalto lungo e poco profondo e una piastra sul ventre angolata. L'abitacolo è davanti a sinistra, il motore davanti a destra, il vano combattimento al centro (se dotato di una torretta) e c'è un vano di smontaggio nella parte posteriore, al quale si accede tramite una rampa nella parte posteriore del veicolo.
Una caratteristica fondamentale del concetto di design Lynx è la separazione e la modularità del veicolo in due parti principali: 
  • il veicolo di base e la missione specialistica 
  • e l'equipaggiamento del ruolo. 

Le varianti Lynx sono progettate attorno a un modulo di azionamento comune con armature scalabili e opzioni di armamento su cui sono installati i kit di missione. I kit attualmente disponibili includono un IFV e un APC. Per i primi, una torretta è montata sul tetto dello scafo, per i secondi la torretta viene rimossa e sostituita da una piastra del tetto che include una serie di dispositivi di visione e un ROWS. Resta inteso che questa trasformazione può essere eseguita vicino o sul campo in otto ore. Le varianti future includeranno veicoli di comando, ricognizione, tutti armati con la torretta standard, oltre a versioni senza torretta tra cui riparazione, recupero, genio e ambulanza.
Secondo Rheinmetall, questo approccio progettuale combina i vantaggi funzionali, economici e di vita di una struttura modulare e i vantaggi in termini di peso, spazio e costo di un design integrale dello scafo.


Mobilità

Il gruppo motore situato nella parte anteriore destra è costituito da un diesel Liebherr accoppiato a un cambio automatico Allison X300 serie 6F / 1R o Renk HSWL 256. Il diesel Liebherr è di tipo common rail e dotato di turbocompressore a due stadi e intercooler a due stadi. La potenza varia da 755 CV (KF31) a 1.140 CV (KF41). Lo scarico (a destra) e il raffreddamento del motore (a sinistra) sono convogliati nella parte posteriore del veicolo per ridurne la traccia termica e acustica. I riduttori finali sono montati nella parte anteriore e le ruote dentate folli con tendi-cingolo sono montate nella parte posteriore. Il carrello ha sei stazioni delle ruote stradali per lato, che guidano un binario in acciaio leggero o elastico segmentato. Le ruote stradali in gomma sono montate su un sistema di sospensioni che comprende bracci oscillanti con barre di torsione convenzionali e sistemi di smorzamento SupaShock, questa configurazione si è dimostrata affidabile ed economica.
Il Lynx è dotato del maggior numero possibile di sottosistemi maturi per facilitare la manutenzione. La trasmissione KF41 è la stessa utilizzata nei veicoli Puma e Ajax, il motore Liebherr è ampiamente utilizzato nel settore edile e la postazione di guida è ripresa dal veicolo blindato Kodiak. Il sistema NBC è lo stesso installato sul Boxer e le piste sono identiche a quelle utilizzate sul PzH 2000.
I parametri di mobilità includono una velocità massima su strada di 70 km / h, una pendenza superabile di almeno il 60%, una capacità di superamento pendenza di almeno il 30%, la capacità di superare (in avanti) un ostacolo verticale di 1 m, la capacità di attraversare un 2,5 m di trincea e una profondità di guado non preparata di 1,5 m. L'autonomia con 900 litri di gasolio è di 500 km.
Il pilota si trova sul lato anteriore sinistro dello scafo ed è dotato di tre periscopi, uno dei quali può essere sostituito con un'alternativa di visione notturna. Il compartimento dell'equipaggio posteriore è progettato come uno spazio neutrale per la missione con l'incorporazione di binari a C e uno schema di punti di fissaggio universali sulle pareti e sul pavimento. Ciò fornisce una configurazione flessibile per tutte le apparecchiature specifiche della missione. Una grande rampa posteriore a comando elettrico consente un rapido ingresso / uscita.

Protezione

La corazzatura in acciaio balistico del veicolo è progettata per proteggere il Lynx da armi anticarro, munizioni di medio calibro, schegge di artiglieria e bombe. L'interno è dotato di un rivestimento anti-schiacciamento per proteggere l'equipaggio, mentre il veicolo dispone anche di sedili disaccoppiati oltre ai pacchetti di protezione IED che includono un doppio pavimento.
Il sistema di riscaldamento, raffreddamento e filtrazione nucleare, biologico e chimico è combinato in un sistema di controllo ambientale stivato nello sponsor sinistro posteriore di fronte al sistema di raffreddamento. I condotti dell'aria conducono al pavimento e all'interfaccia del condotto dell'aria all'estremità superiore dello scafo. 
È possibile fornire una protezione attiva aggiuntiva per l' attacco di proiettili perforanti utilizzando il sistema di protezione attivo AMAP-ADS di Rheinmetall. È inoltre disponibile una gamma di protezioni passive e ausili difensivi. Includono un sistema di oscuramento rapido (ROSY), un sistema di allarme laser e un sistema di localizzazione acustico. Questi sono integrati nella torretta Lance quando è montata insieme al riconoscimento automatico del bersaglio e al tracciamento automatico del bersaglio.

Armamento

Il veicolo come mostrato è dotato di una torretta LANCE stabilizzata, alimentata esternamente, un cannone calibro 30 o 35mm, con munizioni airbust; ciò consente al Lynx di ingaggiare bersagli a distanze fino a 3.000 metri, sia quando è fermo che in movimento. L'armamento principale del veicolo ha un'elevazione compresa tra + 45˚ e −10˚ e ha una velocità di fuoco controllata di 200 colpi al minuto. Montata coassiale a destra vi è la Rheinmetall Machine Gun (RMG) da 7,62 mm, che può sparare munizioni NATO standard da 7,62 × 51 mm a una velocità di fuoco massima di 800 colpi al minuto. La torretta è dotata di backup manuale in caso di mancanza di corrente.
Il veicolo può anche montare un lanciamissili guidato anticarro opzionale.  Il veicolo dimostrativo dell'Eurosatory 2016 era equipaggiato con un lanciatore a doppio giro per il missile guidato anticarro Spike-LR .
La variante IFV della variante KF41 mostrata all'Eurosatory 2018 era dotata della torretta LANCE 2.0 aggiornata, con pod di missione flessibili montati sui lati sinistro e destro in modo che una varietà di sottosistemi possa essere installata per fornire alla torretta capacità specialistiche

ENGLISH

Lynx is an armoured fighting vehicle developed by Rheinmetall Landsysteme (part of Rheinmetall's Vehicle Systems division). The Lynx, configured as a KF31 infantry fighting vehicle (IFV), was unveiled publicly at the Eurosatory defence exhibition on June 14, 2016. The KF41 variant was unveiled publicly at the Eurosatory defence exhibition on June 12, 2018. According to Rheinmetall, the Lynx family of tracked armoured vehicles is at the forefront of a new trend in IFV design toward armoured vehicles with lower unit and through-life costs and reduced complexity. One of the key principles of the Lynx concept is the integration of proven sub-systems with a high technology readiness level to reduce development time, cost and technical risk.

Development

The Lynx family has been designed as a highly protected tracked armoured vehicle to fill a gap identified in the market by Rheinmetall. Lynx was designed as a private venture by Rheinmetall to provide customers with a modern fighting vehicle that will be able to counter emerging near peer threats whilst maintaining the ability to conduct asymmetric or peace-keeping operations. It was first shown publicly in June 2016, and in the lighter KF31 configuration.
On June 4, 2018 Rheinmetall issued a press release informing that the larger Lynx KF41 would debut twice in different configurations at the upcoming Eurosatory defence exhibition later that month. Following the unveiling in IFV configuration on 12 June the vehicle was reconfigured as a command variant, which was unveiled on 13 June. The First configuration would be as an infantry fighting vehicle with the new LANCE 2.0 turret, and then after refitting on site, configured as command variant.
As of May 2020 Rheinmetall had confirmed the company had proposed the Lynx to Australia, Czech Republic, and the United States. Additionally, and according to Spring 2020 investor call transcripts, the company was reportedly in the final phase of negotiations with Hungary regarding an order over €2B ($2.3B in May 2020) worth of IFVs, these reportedly 210-220 examples of Lynx. Rheinmetall formally announced an official order from the Hungarian government on 10 September 2020 for 218 Lynx, this confirming Hungary as the first user of the type.

Design

The Lynx is built around a sponson-shaped hull with a long, shallow glacis and angled belly plate. The driver compartment is at the front left, the engine the front right, fighting compartment in the middle (when fitted with a turret) and there is a dismount compartment at the rear, access to which is via a ramp in the rear of the vehicle.
A key feature of the Lynx design concept is the separation and modularity of the vehicle into two primary parts: the basic vehicle and specialist mission and role equipment. Lynx variants are designed around a common drive module with scalable armour and armament options upon which the mission kits are installed. Available kits currently include an IFV as well as an APC. For the former, a turret is fitted to the roof of the hull, for the latter the turret is removed and replaced by a roof plate that includes an array of vision devices and an ROWS. It is understood that this transformation can be carried out near to, or in the field, within eight hours. Future variants will include command, engineer reconnaissance, and joint fires vehicles all armed with the standard turret, as well as non-turreted versions including repair, recovery, combat engineer, and ambulance.
According to Rheinmetall, this design approach combines the functional, cost and through life advantages of a modular structure, and the weight, space and cost advantages of an integral hull design.

Mobility

The power pack located at the front right consists of a Liebherr diesel coupled to either an Allison X300 series 6F/1R or Renk HSWL 256 automatic transmission. The Liebherr diesel is of the common rail type and fitted with a two-stage turbocharger and two-stage intercooler. Power output varies from 755 hp (KF31) to 1,140 hp (KF41). The exhaust (right) and engine cooling (left) are routed to the rear of the vehicle to reduce its thermal and acoustic signature. Final drives are mounted in the front and the idler sprockets with track tensioners are mounted at the rear. The running gear has six road wheel stations per side, which guide a lightweight steel or segmented rubber band-type track. The rubber-tyred road wheels are mounted on a suspension system comprising swing arms with conventional torsion bars and a SupaShock damper systems, this set-up is proven to be reliable and cost-efficient.
The Lynx is fitted with as many mature sub-systems as possible in order to facilitate maintenance. The KF41 transmission is the same as that used in the Puma and Ajax vehicles, the Liebherr engine is widely used in the construction industry, and the driver’s station is taken from the Kodiak armoured engineering vehicle. The NBC system is the same as that installed on Boxer and the tracks are identical to those used on the PzH 2000.
Mobility parameters include a maximum road speed of 70 km/h, a gradeability of at least 60%, a sideslope traverse capability of at least 30%, the ability to climb (forwards) a 1 m vertical obstacle, the ability to cross a 2.5 m trench, and an unprepared fording depth of 1.5 m. Operational range on 900-litres of diesel fuel is 500 km.
The driver is located to the left front side of the hull and is furnished with three periscopes, one of which can be replaced with a night vision alternative. The rear crew compartment is designed as a mission neutral space with the incorporation of C-rails and a pattern of universal fixing points on the walls and floor. This provides a flexible configuration for all mission specific equipment. A large power-operated rear ramp allows for rapid ingress/egress of dismounts.

Protection

The vehicle's ballistic steel armour is designed to protect the Lynx from anti-tank weapons, medium-caliber ammunition, artillery shrapnel and bomblets. The interior is fitted with a spall liner to protect the crew, while the vehicle also features decoupled seats in addition to mine and IED protection packages that include a double floor.
The heating, cooling and nuclear, biological and chemical filtration system is combined in an environmental control system stowed in the rear-located left sponson in front of the cooling system. Air ducts lead to the floor and to an air duct interface on the top end of the hull.
Additional active protection can be provided for shaped charge warhead attack using Rheinmetall's Active Protection System AMAP-ADS. A range of passive protection and defensive aids are also available. They include a rapid obscuration system (ROSY), laser warning system and acoustic shot locator system. These are integrated in the Lance turret when it is fitted along with automatic target recognition and automatic target tracking.

Armament

The vehicle as shown at Eurosatory 2016 is outfitted with a LANCE turret mounting a stabilized, externally powered, autocannon of 30 mm or 35 mm caliber, with airburst munition support. This allows the Lynx to engage targets at ranges of up to 3,000 meters, both when static and when on the move. The vehicle's main armament has an elevation of between +45˚ and −10˚ and has a controlled rate of fire of 200 rounds per minute. Mounted coaxial to the right is the latest Rheinmetall Machine Gun (RMG) 7.62 mm, which can fire standard 7.62 × 51 mm NATO ammunition and has a maximum rate of fire of 800 rounds a minute. The turret has manual back-up in case of power failure.
The vehicle can also mount an optional anti-tank guided missile launcher. The demonstrator vehicle at Eurosatory 2016 was outfitted with a twin-round launcher for the Spike-LR anti-tank guided missile.
The IFV variant of the KF41 variant shown at Eurosatory 2018 was fitted with the updated LANCE 2.0 turret, this having flexible mission pods fitted on the left and right sides so that a variety of subsystems can be installed to provide the turret with specialist capabilities.

Variants

The Lynx family of tracked armoured vehicles is based around two primary models, the KF31 and a slightly larger but considerably heavier KF41. Both models can be configured for a variety of roles that include command and control, armoured reconnaissance, surveillance, repair, recovery or ambulance operations in addition to infantry fighting vehicle configuration.

Kettenfahrzeug 31 (KF31)

This model, first displayed at Eurosatory 2016, has a maximum permissible gross vehicle weight of 35 to 38 tonnes, is 7.22 meters long and can carry a crew of three plus six passengers. Powered by a 563 kW (755 hp) engine, the vehicle can reach a top speed of 65 km/h.

Kettenfahrzeug 41 (KF41)

This model, as displayed for the first time at Eurosatory 2018, has a maximum permissible gross vehicle weight of up to 50 tonnes. The KF41 can carry a crew of three plus eight passengers. It is powered by an 850 kW (1,140 hp) engine and has a top speed of 70 km/h (43 mph). The KF41 is being offered to the Australian Army for the LAND 400 program.


Operators

Future operators

Hungary

On 17 August, 2020 the government of Hungary and Rheinmetall Group signed a contract to start manufacturing the Lynx infantry fighting vehicle family in Hungary. Few other details emerged at the time about the deal, which is part of Hungary’s Zrinyi 2026 rearmament programme launched in 2017. Hungarian Ministry of Defence sources stated to Janes on 19 August that the details of the package, including industrial and procurement aspects, would be worked out within one to two months. In a 2 September, 2020 interview about the new Lynx production joint venture and possible further German-Hungarian-Czech cooperation, Oliver Mittelsdorf, CEO of Rheinmetall Defence explicitly mentioned the existing, long-running manufacturing ties between Rheinmetall's MAN and Rába, a 124-years old Hungarian automotive manufacturing group with an active truck manufacturing plant near Győr, in Northwestern Hungary. A week later, on 10 September, 2020 Rheinmetall and the Government of Hungary held a joint press conference in Budapest and among the details of the new joint manufacturing project they announced that the new factory, along with an almost three square kilometer-sized full-service vehicle test track called ZALA Zone, will be built near Zalaegerszeg, Hungary. Rheinmetall's press release of 10 September, 2020 confirmed that the Hungarian Ministry of Defence had awarded Rheinmetall an order to supply tracked armoured vehicles and related products and services with a total value of more than €2 billion. The contract covers 218 Lynx infantry fighting vehicles fitted with Rheinmetall's manned 30mm Lance turret. The larger/heavier Lynx KF41 has been selected by Hungary. The award also includes nine Leopard 2 based Buffalo armoured recovery vehicles, plus additional products and services that include simulators, training and instruction, plus an initial supply of spare parts as well as maintenance support. During a first phase of production, Hungary is to receive forty-six Lynx plus the nine Buffalo ARVs, with delivery to be complete by the start of 2023. These vehicles will be built in Germany, but for the second production phase an additional 172 Lynx will built in Hungary. To this end, it was confirmed the Hungarian government and Rheinmetall had agreed in August 2020 to establish a joint venture responsible for creating a Lynx production facility in Hungary, to be financed by a local company.

Potential operators

Australia

Rheinmetall has submitted the Lynx KF41 for the Australian Defence Force's LAND 400 Phase 3 program (also known as the Mounted Close Combat Capability), the Request for Tender (RfT) for which was released on 24 August 2018. Land 400 Phase 3 will replace the Australian Army's M113AS4 armoured personnel carriers (APCs) with up to 450 infantry fighting vehicles (IFVs) and 17 manoeuvre support vehicles.[4][20] In mid-September 2019, Rheinmetall's Lynx KF41 Infantry Fighting Vehicle (IFV) and Hanwha's Redback K21 IFV were shortlisted for consideration for the Australian Army’s project Land 400 Phase 3 and will provide prototypes for a risk mitigation activity. Down-selection of a preferred tenderer that will be presented to the government for consideration is expected during 2022 and following that an initial operating capability of the selected platform is expected to be reached in 2024–2025, while final operating capability is expected by 2030–2031. Rheinmetall has also responded to a request for information on the procurement of another 117 vehicles under the Land 400 programme, these configured as logistics, mortar carries with direct fire capabilities, mortar ammo providers, and protected amphibious platforms.

Czech Republic

Rheinmetall submitted the Lynx KF41 for the Army of the Czech Republic's (ACR's) program to replace its current BVP-2, a Czech produced version of BMP-2. In November 2017 the Czech MoD completed field tests of four tracked AFV finalists and planned to select a winning platform by mid-2018, awarding a CZK50 billion contract for a mixed batch of 210 platforms with initial deliveries to begin in 2020. The ACR were reportedly very satisfied with the Lynx. In December 2018, Lynx was shortlisted together with the Puma, ASCOD and CV90. In October 2019 it was announced that the Puma was being withdrawn from the competition. The manufacturer said that the Czech Army requirements would require an expensive redesign to the existing Puma which it was unwilling to undertake. As of September 2020 no decision had been announced, however in March 2020 it was reported by Janes that the Czech MoD was preparing big cuts in defence spending as a result of Covid-19 and that the IFV award was threatened.

Qatar

In December 2018, a single Lynx KF41 was presented in the annual National Day parade badged and camouflaged as a Qatar Military Police (MP) vehicle. Rheinmetall declined to comment as to the nature of the vehicle’s presence at the parade.

United States

In October 2018, Rheinmetall announced a teaming with Raytheon to propose the Lynx KF41 to the U.S. Army in answer to its developing Next-Generation Combat Vehicle program, this slated to replace the Bradley Fighting Vehicles and other current platforms. This program, now known as the Optionally Manned Fighting Vehicle program, was halted on 16 January 2020. The U.S. stated it was cancelling the OMFV prototyping competition in order to revisit the requirements and acquisition timeline. The OMFV was subsequently re-started and in May 2020 Matthew Warnick, the American Rheinmetall Vehicles managing director stated that the Rheinmetall teaming would continue to compete in the revised OMFV requirement, however he added, “Our proposal is not going to be the Lynx in its current form, as everybody saw at [the AUSA conference] two years ago … This is going to be revised and evolved, based on the final RFP [request for proposal] but it’s a great starting point given its next-generation attributes to meet the specific US Army requirements.” The US Army is currently expected to release the OMFV RFP and at the start of FY 2022 to select vendors to produce digital designs. In the second quarter of FY 2023, the army will then decide which teams will proceed into the one-year detailed design phase. By the start of the second quarter of FY 2024, the service will conduct a critical design review and select the vendors to build OMFV prototypes with plans to begin testing these prototypes in the second half of FY 2025, before making a final down-select in FY 2027.

(Web, Google, Wikipedia, You Tube)















































 

sabato 17 ottobre 2020

Gli enigmatici SSK classe Upholder / Victoria, dismessi dalla Royal Navy nel 1994 e venduti alla Canadian Forces Maritime Command


La classe Upholder è un classe di sottomarini Diesel-elettrici (un fallimento ingegneristico) sviluppata dal Regno Unito negli anni ottanta, per essere ufficialmente commissionati nel 2000 come classe Victoria.
La classe di sottomarini a propulsione Diesel-elettrica Upholder è stata l'ultima della tradizione britannica, e porta il nome della più famosa ed efficiente delle unità subacquee inglesi, il leggendario HMS Upholder (P37) del comandante Wanklin.
Questa serie di 4 unità, che avrebbero dovuto affiancare la classe nucleare Trafalgar e sostituire la classe Oberon, vecchia ma ancora efficiente, furono ideate negli anni ottanta, ma hanno avuto una vita travagliatissima, con la messa in riserva per risparmiare sul bilancio, e poi la vendita, ancora nuove, al Canada (e l'affitto di un'importante base navale).
Gli Upholder canadesi, ribattezzati classe Victoria ed impiegati in sostituzione dei vecchi Oberon, hanno avuto innumerevoli seri problemi ed incidenti.
Nel Regno Unito, con la classe Upholder è terminato lo sviluppo di sottomarini convenzionali, dedicandosi solo alle unità nucleari.


Unità:
  • HMCS Victoria (SSK 876), già HMS Unseen (S41)
  • HMCS Windsor (SSK 877), già HMS Unicorn (S43)
  • HMCS Corner Brook (SSK 878), già HMS Ursula (S42)
  • HMCS Chicoutimi (SSK 879), già HMS Upholder (S40).


Modernizzazione della classe Victoria

Il governo del Canada ha reso la modernizzazione dei sottomarini di classe Victoria una pietra angolare del contributo della Royal Canadian Navy alla politica di difesa canadese: forte, sicura, impegnata. Ha condotto attivamente la manutenzione regolare e ciclica della flotta attuale durante la pianificazione del programma di ammodernamento che ha esteso la rilevanza operativa della classe Victoria fino alla metà degli anni '30.
Basandosi sulle lezioni apprese dalla modernizzazione di successo della classe Halifax, questo programma fornirà capacità modernizzate e migliorate alla classe Victoria:
  • migliorare l'abitabilità e le condizioni di schieramento a bordo a sostegno dei sottomarini RCN;
  • posizionare la classe per contribuire in modo significativo alle operazioni congiunte CAF a terra; 
  • e garantire la sopravvivenza della classe contro una minaccia in evoluzione in uno spazio di battaglia sempre più complesso e mutevole.
Il programma di modernizzazione degli SSK classe Victoria è composto da numerosi progetti distinti che forniscono miglioramenti e aggiornamenti richiesti. Per gestire al meglio il costo, la pianificazione e i rischi di integrazione, è stato necessario un approccio programmatico.


Il programma di manutenzione per i sottomarini canadesi

I sottomarini canadesi generalmente operano in un ciclo operativo in cui ogni nave è a disposizione della flotta per sei anni - indicato come "periodo operativo" - seguito da due anni di profonda manutenzione durante un Extended Docking Work Period (EDWP).
I sottomarini sono tra le macchine più complesse al mondo e operano in un ambiente che non ammette errori. Ciò richiede un processo di certificazione dei materiali altamente rigoroso per garantire la sicurezza dell'equipaggio e del sottomarino. Questa certificazione dei materiali si ottiene attraverso un ciclo di manutenzione basato sul tempo che costituisce un elemento essenziale del ciclo operativo di qualsiasi classe di sottomarini. Nel 2008, il Consiglio del Tesoro canadese ha approvato la spesa fino a un massimo di 1,5 miliardi di dollari per un periodo fino a 15 anni per il supporto in servizio per i sottomarini di classe Victoria. Il Victoria In-Service Support Contract (VISSC) è stato assegnato in modo competitivo al Canadian Submarine Management Group, ora ribattezzato Babcock Canada Inc.
Tutti i periodi di lavoro di attracco prolungato della classe Victoria eseguiti durante la durata del contratto, a partire da HMCS Chicoutimi, sono finanziati e gestiti attraverso il VISSC. Nel giugno 2013, il governo del Canada ha esercitato la prima opzione di estensione quinquennale di questo contratto di supporto alla manutenzione, per un valore di 531 milioni di dollari. Questo contratto evidenzia un'iniziativa chiave di condivisione delle conoscenze strategiche e una partnership tra RCN e l'industria canadese.



ENGLISH

The Upholder / Victoria-class submarines, also known as the Type 2400 (due to their displacement of 2,400 tonnes), are the class of the diesel-electric submarines that were built in the United Kingdom in the 1980s to supplement the nuclear submarines served in the Submarine Service of the British Royal Navy.


Originally classified as the Upholder class in the British service, these submarines only served for a short span of time and were decommissioned in 1994. After an unsuccessful bid to transfer these submarines to Pakistan Navy in 1993–94, Canadian Forces Maritime Command (now Royal Canadian Navy since 2011) eventually purchased the submarines and a suite of trainers from the Royal Navy to replace their decommissioned Oberon class of submarines in 1998.
In Canadian service, the submarines are classified as the Victoria class. These submarines initially suffered from serious electrical problems and were beset by mechanical operational incidents that limited their active service and the scope of their deployments.


Design and development

In the late 1970s the United Kingdom Ministry of Defence (MoD) proposed a diesel-electric submarine design to replace the Oberon class. The new submarine class was intended to provide a more cost-effective alternative for training and in coastal defence. The announcement for the new design took place in September 1979. Five designs were put forward, with the MoD selecting the 1,960-ton design. However, the need for export potential upped the displacement limit to 2,400 tons to allow for flexibility in construction if the need for alternative machinery and systems arose.
The Vickers Shipbuilding & Engineering Ltd. (VSEL) Type 2400 diesel-electric patrol submarine design was selected. The design displaces between 2,168–2,220 tons surfaced and 2,400–2,455 tons submerged. The submarines are 230 feet 7 inches (70.28 m) long overall with a beam of 25 feet (7.6 m) and a draught of 17 feet 8 inches (5.38 m). The submarines had a complement between 44 and 47 with the Royal Navy.
The submarines have a single-skinned, teardrop-shaped hull constructed from NQ1 high tensile steel. The hull is fitted with elastomeric acoustic tiles to reduce the submarine's acoustic signature. The class has a reported dive depth of over 650 feet (200 m).


Machinery

The submarines are powered by a single-shaft diesel-electric system. They are equipped with two Paxman Valenta 1600 RPS SZ diesel engines, each driving a 1.4-megawatt (1,900 hp) GEC electric alternator. There are two 120-cell Chloride batteries. The batteries have a 90-hour endurance at 3 knots (5.6 km/h; 3.5 mph). The submarine is propelled by a 4.028-megawatt (5,402 hp) GEC dual armature electric motor turning a seven-blade fixed pitch propeller. This gives the vessels a maximum speed of 12 knots (22 km/h; 14 mph) on the surface and 20 knots (37 km/h; 23 mph) submerged. They have a diesel fuel capacity of 200 tons, giving a range of 8,000 nautical miles (15,000 km; 9,200 mi) at 8 knots (15 km/h; 9.2 mph) and 10,000 nautical miles (19,000 km; 12,000 mi) at snorting depth.

Armament

The class is equipped with six 21-inch (533 mm) torpedo tubes in the bow. In British service, the submarines were supplied with up to 18 Marconi Mk 24 Tigerfish Mod 2 torpedoes; they were also capable of using UGM-84 Sub-Harpoon missiles. They could also be adapted for use as a minelayer. The DCC Action Information Organisation and Fire Control System (AIS/FC), developed from the DCA/DCB systems in service at that time aboard Royal Navy nuclear-powered submarines, was based on two Ferranti FM1600E computers with a digital data bus linked to three dual-purpose consoles. Up to 35 targets could be tracked, and automatic guidance could be provided for four torpedoes against four separate targets.
During the refit for Canadian service, the Sub-Harpoon and mine capabilities were removed and the submarines were equipped with the Lockheed Martin Librascope Submarine fire-control system (SFCS) to meet the operational requirements of the Canadian Navy. Components from the fire control system of the Oberon-class submarines were installed. This gave the submarines the ability to fire the Gould Mk 48 Mod 4 torpedo. This torpedo, operating at 40 knots (74 km/h), is deployed against targets over a range of 50 kilometres (31 mi). The torpedo range is 38 kilometres (24 mi) at speeds up to 55 knots (102 km/h). The type uses active and passive homing to approach the designated target. In 2014, the Government of Canada purchased 12 upgrade kits that will allow the submarines to fire the Mk 48 Mod 7AT torpedo.

Sensors and countermeasures

As built, the Upholder class was equipped with the Kelvin Hughes Type 1007 I-band radar for navigational purposes. The submarines were fitted with the Type 2040 Thompson Sintra ARGONAUTE hull mounted sonar, installed in the bow and Type 2026 GEC Avionics passive towed array. The submarines had the Type 2019 Thompson Sintra PARIS passive sonar for active and intercept purposes. They also had the Type 2041 passive ranging sonar and the Type 2004 expendable bathythermograph. The class was fitted with Type 2008 underwater telephone. The Type 2040 sonar was intended to be upgraded to Type 2075; however, that upgrade was cancelled in 1991.
These systems were later upgraded with the installation of the BAE Type 2007 array and the Type 2046 towed array. The Canadian Towed Array Sonar (CANTASS) has been integrated into the towed sonar suite.
The Upholder-class submarines were equipped with the CK035 electro-optical search periscope and the CH085 optronic attack periscope, originally supplied by Pilkington Optronics. After the Canadian refit, the submarines were equipped with Canadian communication equipment and electronic support measures (ESM). This included two SSE decoy launchers and the AR 900 ESM.

Submarines in class

Construction and Royal Navy service

The plan initially called for twelve submarines to be built. However, formal approval was given in 1981 for the construction of only nine. The nine submarines were to be constructed in three stages, with Stage 1 being the construction of the prototype submarine, Stage 2 being the construction of three more follow-on s, and Stage 3 being the construction of five vessels with updated systems.
The MoD placed the order with VSEL for the Stage 1 submarine on 2 November 1983. Upholder's keel was laid down at the VSEL shipyard at Barrow-in-Furness that month and the submarine was launched on 2 December 1986. The order for Stage 2 was placed on 2 January 1986 with the contract for the next three vessels going to Cammell Laird, a subsidiary of VSEL. The cost announced for the program was £620 million plus long-lead items.
The second submarine, Unseen, was laid down at the Cammell Laird shipyard at Birkenhead on 12 August 1987 and launched on 14 November 1989. Ursula was laid down on 25 August 1987 and launched on 22 February 1991 and Unicorn was laid down on 13 March 1989 and launched on 16 April 1992.
Upholder was completed on 9 June 1990, followed by Unseen on 20 July 1991, Ursula on 8 May 1992 and Unicorn on 25 June 1993. Initially they were unable to fire torpedoes and the first three were refitted in 1992 and 1993 to have this fixed at a cost of £9 million. They were operating from HMS Dolphin (at Gosport), but with only four submarines the base was deemed uneconomic and they transferred to Devonport Naval Base. In their short period of service, the class operated mostly in the Atlantic Ocean, the Mediterranean and UK waters. The exception was Unicorn, which completed a 6-month deployment east of Suez, completing operations and exercises in the Mediterranean, the Gulf of Oman and Indian Ocean and in the Persian Gulf.
In 1992, the Defence Review announced the decision by the MoD to direct all further submarine expenditure to nuclear-powered submarines. In 1994, the Royal Navy abandoned the Type 2400 program after the first four submarines and Stage 3 was never ordered. The Upholder class were declared surplus in 1994 and laid up. Unseen was paid off on 6 April 1994, followed by Upholder on 29 April and Ursula on 16 June. These three submarines were laid up in June 1994. Unicorn was paid off on 16 October 1994 and laid up.

Failed sale to Pakistan

In 1992, the United Kingdom learned that the Pakistan had been in discussion and negotiation with France over the acquisition of submarines with Sharif administration giving a permission to the Pakistan Navy to acquire either diesel-electric-powered or the air-independent-powered submarines. The Pakistan Navy's research team, comprising three admirals, visited Sweden, China, France, and the United Kingdom. Original plans were to acquire the submarines from Sweden from the first team but the second team recommended the acquisition of either the British Upholders or the French Agosta class. During this time, Admiral S. M. Khan, the Chief of Naval Staff (CNS), had strongly suggested Upholder but the Bhutto administration had chosen the French technology over several political and technical reasons.

Canadian acquisition

Following the cancellation of the Canadian nuclear-powered submarine program, the Canadian navy sought to acquire conventionally-powered submarines again. The Canadian National Defence White Paper of 1994 stated the intent to explore the purchase of the Upholder class from the UK. The choice faced opposition and the price of $1 billion that the MoD demanded stalled the decision by the Cabinet of Canada to go ahead with the purchase. In the meantime, the subs were offered to Portugal and Chile. In 1996, another attempt to purchase the subs by Canada was stopped soon after starting. In the meantime, the UK spent millions maintaining the submarines.
In April 1998, the Canadian government announced the potential acquisition of the Upholder class. The published cost was $750 million divided into two parts. $610 million was to be paid for the subs themselves and the remaining $140 million would cover related expenses.
On 3 July 1998, the deal was ratified and two contracts were signed simultaneously. The first was an eight-year interest-free lease-to-purchase agreement for the four submarines, five training simulators and assorted training and data packages. The lease payments were part of a barter agreement for the continued access by the UK to Canadian Forces bases Wainwright, Suffield, and Goose Bay. The second contract was with VSEL for the refits required for the reactivation of the laid-up submarines. This included modifications for Canadian service, new batteries, a training program and all spare parts.
Although the Canadian government touted the $750 million CAD procurement as a bargain, there have been arguments over the quality of the submarines with some suggestions that the purchase price will be at least spent again putting things right. Canadian opposition parties are demanding that the British government fund any further costs, since it is widely believed that the submarines deteriorated while in storage and the Royal Navy was not completely forthcoming on their condition during the sale. Stephen Saunders, editor of Jane's Fighting Ships, argued that "there is not something inherently wrong with the class of submarines.”

Trainers

Victoria-class submarines use eight Submarine Command Team Trainers built for the Royal Navy. These were moved from the UK to Canada by CAE, Computing Devices Canada, General Dynamics Canada and Irving Shipbuilding. These devices are land-based systems using simulators and other training devices. Victoria-class submarines also use a Canadian Submarine Escape Trainer, attached to a real submarine escape hatch to simulate escape procedures.

Canadian service

Upon acquiring the subs, Maritime Command suggested that the subs would be operational by 2000. This included an 18-month systems check. Each sub would undergo a six-month Canadian Work Period (CWP). During the CWP, Canadian communications and fire control systems were installed. On 6 October, Unseen was accepted by Canada at Barrow-in-Furness and renamed Victoria. The submarine arrived in Canada on 23 October 2000 and was commissioned into Maritime Command on 2 December. She then underwent her CWP.
Unicorn was accepted by Canada and renamed Windsor on 5 July 2001. The sub sailed from Faslane on 8 October, arriving at Halifax, Nova Scotia on 19 October 2001. During her sea trials, Windsor suffered minor flooding while submerged, forcing her early entry into the CWP. Ursula was accepted by Canada and renamed Corner Brook on 21 February 2003. She departed Faslane on 25 February and arrived at Halifax on 10 March. Corner Brook was commissioned at her namesake city on 29 June 2003. On 29 June 2003, following the completion of her CWP, Victoria transferred to the west coast, arriving at Esquimalt, British Columbia on 24 August. Windsor was commissioned into Maritime Command during her CWP on 4 October 2003.
The crew of Onondaga, the last Canadian Oberon, transferred to Upholder, the last of the class to transfer in July 2000. The sub was accepted by Canada on 2 October 2004 at Faslane and renamed Chicoutimi.

Fire

Chicoutimi cleared Faslane on 4 October 2004 on her homeward journey to Canada. Since Faslane was a nuclear submarine base, Chicoutimi was forced to travel on the surface for the first stage of the passage. On 5 October Chicoutimi was passing through a gale with 6-metre (20 ft) seas. During a watch change at 0300 sea water entered the conning tower. The lower hatch prevented the water from entering the sub; however, the drain in the tower failed to operate. When the lower hatch was opened, the water fell into the sub. However, the water was pumped overboard and the incident noted. The drain valves required repair before diving. At 1052 two crew entered the tower to perform repairs. The upper hatch was opened. However, after roughly 25 minutes, another tool was needed from within the sub. When the lower hatch was opened, the submarine was rocked by a large wave, throwing roughly 500 gallons of sea water into Chicoutimi. Electrical explosions and fire erupted soon afterward, spreading quickly. In order to fight the fire, all systems aboard the submarine were shut down, leaving the submarine dead in the water. An attempt to restore auxiliary power caused another fire to break out. At 1912, attempts to remove smoke by starting an oxygen generator caused another fire. Nine sailors were injured, three seriously.
The first ship on the scene was the Irish patrol vessel LÉ Róisín, which suffered damage in the heavy seas and was forced to return to port. The British frigate HMS Montrose arrived the following day to provide aid. Rescue efforts had been hampered by the poor weather. The three seriously injured crewmen were evacuated by Montrose's helicopter and flown directly to Sligo, Ireland. One sailor died of his injuries shortly after arrival. Chicoutimi was taken in tow on 7 October and arrived back at Faslane on 9 October.
Chicoutimi was transported to Halifax aboard the submersible heavy lift vessel Eide Transporter, arriving on 1 February 2005. The commissioning of the submarine was delayed until the assessment of the damage could take place. Following the assessment, Chicoutimi was carried to Esquimalt aboard the submersible heavy lift ship Tern, arriving on 29 April 2009 to undergo a major refit.

Service entry

Windsor became the first active member of the class in Canadian service in June 2005. In the following year and a half, the submarine took part in several international naval exercises and training periods with other Canadian units. Victoria performed several sea trials and training exercises before beginning a major refit, called the Extended Docking Work Period (EDWP), on 27 June 2005. Corner Brook entered her CWP from 2004–2005 and began sea trials on 24 October 2006.
On 15 January 2007, Windsor began the EDWP refit at Halifax. In 2007 Corner Brook participated in the NATO naval exercise "Joint Warrior", marking the first time in fifteen years that a Canadian submarine had sailed in European waters. In August 2007, Corner Brook participated in Operation Nanook, Canada's naval exercise in the Arctic.
In March 2008, Corner Brook deployed as part of Operation Caribbe in the Caribbean Sea. In August 2009 Corner Brook again deployed to the Arctic as part of Operation Nanook.
On 30 January 2011 Corner Brook left Halifax to transfer to the west coast. On the way, the submarine participated in Operation Caribbe. She arrived at Esquimalt on 5 May 2011. On 4 June 2011, Corner Brook while diving off the coast of British Columbia slammed into the seafloor at 5.9 knots (11 km/h) at a depth of 45 metres (148 ft). Two sailors were injured in the collision and the submarine suffered significant damage, with a 2-metre (6 ft 7 in) hole in the bow. Two torpedo tube doors were torn off in the collision. The submarine surfaced and made port without requiring aid. The commander of the submarine was later stripped of his command following a board of inquiry. Repairs and a major refit kept the sub out of operational service until 2018. Victoria emerged from the EDWP at the end of 2011.
Victoria was declared fully operational in March 2012 and participated in the RIMPAC naval exercise that year, sinking ex-USNS Concord with one of her torpedoes. Windsor finished her refit on 30 November 2012. Victoria participated in Operation Caribbe in 2013. Windsor reentered the dockyard in March 2014 requiring the replacement of a defective diesel generator.
Windsor performed a 105-day training cruise in 2015, making it the longest deployment by a Victoria-class submarine. The submarine participated in training exercises with NATO and several navies in the North Atlantic. During the cruise, Windsor was deployed to track five submarines from another nation that had entered the North Atlantic. Canada announced plans for a major life extension for the class on 7 April 2015, possibly to start in 2020. The estimated cost for the program would be between $1.5 and $2 billion CAN.
On 3 September 2015, Chicoutimi was commissioned into the Royal Canadian Navy at Esquimalt. However, the sub was restricted to shallow-water diving. In October 2015, Chicoutimi was among the Canadian vessels sent to participate in a joint exercise with the United States Navy. Chicoutimi and Victoria were taken out of active service in 2016 after hundreds of welds were found to not meet quality standards, affecting the ability of the subs to dive. They will be docked at Esquimalt for several months. Chicoutimi is to be repaired first, followed by Victoria. Victoria will be used for training purposes until repairs are effected. In September 2017, Canada deployed Chicoutimi on patrol in Asian waters, the first such deployment by a Victoria-class submarine. During the deployment, Chicoutimi marked the first visit to Japan by a Canadian submarine since 1968. The vessel returned to Canada on 21 March 2018 spending 197 days at sea, the longest deployment by a Victoria-class submarine in Canadian service.

Life extension and potential replacement

Under the Justin Trudeau government's defence policy paper, Strong Secure Engaged (2017), the operational life of each Victoria-class boat will be extended by one additional "life-cycle" (or by about eight years). This is designed to permit the operation of the fleet into about the early to mid-2030s.
However, as of 2020 no decision has been taken on the actual replacement of Canada's submarines which are already nearly thirty years old. Analysis by the Naval Association of Canada indicates that the lead times, technical challenges and costs involved in submarine replacement would be significant were such a program to be initiated.

(Web, Google, Wikipedia, You Tube)




























 

MHI ha varato il primo di una nuova classe di sottomarini per la JMSDF equipaggiati con batterie agli ioni di litio: l’SSK 513 Taigei


MHI ha varato il primo di una nuova classe di sottomarini per la JMSDF equipaggiati con batterie agli ioni di litio: l’SSK 513 Taigei


La giapponese Mitsubishi Heavy Industries (MHI) ha varato il primo di una nuova classe di sottomarini d'attacco diesel-elettrici (SSK), il Taigei, il primo di una nuova classe di SSK per il JMSDF equipaggiato con batterie agli ioni di litio. (MHI)
Il nuovo sottomarino da 3.000 tonnellate, che è stato chiamato Taigei (con il numero operativo SS 513), è entrato in acqua il 14 ottobre in una cerimonia tenutasi presso le strutture della MHI a Kobe City.
La nuova unità ha un equipaggio di circa 70, una lunghezza fuori tutto di 84 m, una larghezza di 9,1 m, un pescaggio di 10,4 m e un dislocamento standard di circa 3.000 tonnellate, il che significa che è quasi il stesse dimensioni degli SSK della classe Soryu, che sono lunghi 84 m, larghi 9,1 m, profondi 10,3 m e hanno un dislocamento standard di 2.950 tonnellate.
Taigei significa "grande balena" in giapponese ed era il nome di un sottomarino della Marina Imperiale giapponese.
L’SSK, che entrerà in servizio nel marzo 2022, è stata anche chiamata "29SS". Questa designazione si riferisce all'anno "Heisei 29" nel calendario giapponese (2017 nel calendario gregoriano).
Il nuovo sottomarino, che è costato circa 80 miliardi di yen (758,7 milioni di dollari) per la costruzione, è alimentato da un motore diesel-elettrico che genera 6.000 CV.
La JMSDF ha confermato che la nuova unità è dotata di batterie agli ioni di litio al posto di quelle al piombo, proprio come gli ultimi due dei 12 classe Soryu per la JMSDF: Oryu (SS 511) e Toryu (SS 512). L’Oryu è stato impostato nel marzo 2020, mentre il Toryu sarà in servizio nel marzo 2021.


I sottomarini di classe Taigei (29SS) sono una nuova classe di sottomarini d' attacco sviluppati per la Japan Maritime Self-Defense Force, successori degli SSK Soryu.

Sviluppo

Lo sviluppo della classe Taigei è stato condotto da una serie di ricerche volte a sviluppare componenti sottomarini nuovi e migliorati per migliorare le capacità dei "sottomarini di nuova generazione" che opereranno negli anni 2020 e oltre. Nel 2004, è stata effettuata una valutazione sulla ricerca di sistemi sottomarini di nuova generazione in base ai requisiti di capacità: velocità di immersione, stealth, ecc. La ricerca ha previsto l'utilizzo di tecnologie di simulazione per ottimizzare il design più efficiente per il sottomarino e analizzare il suo rapporto costo-efficacia. I dati tecnici ottenuti sono stati utilizzati per migliorare la progettazione e costruzione della nuova classe di sottomarini. Un totale di 800 milioni di yen sono stati utilizzati per finanziare il progetto.


Nel 2005, sono iniziate le valutazioni per un sonar sottomarino di nuova generazione e propulsione indipendente dall'aria (AIP). Il primo progetto mirava a sviluppare un nuovo array sonar con miglioramenti nella riduzione del peso, risparmio energetico e capacità di rilevamento in risposta alla maggiore silenziosità delle future navi e sottomarini. Il secondo progetto mirava a sviluppare un nuovo sistema AIP per estendere la sostenibilità subacquea per i futuri sottomarini. I nuovi sonar vengono montati sui sottomarini di prossima generazione che opereranno dal 2020 in poi. Allo stesso modo, i nuovi sistemi AIP consentiranno ai sottomarini di espandere le loro aree operative, compresa la risposta in acque poco profonde. La ricerca su entrambi i componenti è stata condotta tra il 2006 e il 2008 e testata tra il 2008 e il 2009. Un totale di 1,5 miliardi di yen e 2,5 miliardi di yen sono stati stanziati per i progetti del sistema sonar e AIP.
Nel 2006 è stata condotta una valutazione per la struttura sottomarina anti-rilevamento / resistenza agli urti. Il progetto prevede la ricerca del design dell'elica e della forma dello scafo per ridurre la generazione di rumore e la struttura del sottomarino per migliorare la riduzione del rumore e la resistenza agli urti. La ricerca prevede che il sottomarino di nuova generazione utilizzi la struttura del pavimento galleggiante; le assi del pavimento sono fissate al guscio interno tramite un meccanismo di ammortizzazione per evitare che le vibrazioni all'interno del sottomarino escano e proteggono dagli urti dall'esterno del sottomarino. Un prototipo è stato sviluppato tra il 2007 e il 2011 e testato tra il 2010 e il 2014. Per finanziare il progetto sono stati utilizzati finanziamenti pari a 400 milioni di yen.
Nel 2009 sono state valutate le ricerche sul sistema di generazione di energia per lo snorkeling e sul sistema sonar. Il nuovo sistema di generazione di energia per lo snorkeling mira ad essere più compatto, silenzioso e generare una maggiore potenza per migliorare l'operatività, la sopravvivenza e la furtività dei sottomarini. 
I sistemi di generazione di energia alternativi comparabili che sono stati esaminati includono i motori diesel MTU 16V396SE utilizzati sul sottomarino Tipo 212 e SEMT PielstickMotore diesel PA4V200SM. Tuttavia, si è ritenuto che entrambi i motori producessero prestazioni inferiori alle prestazioni richieste e quindi è stato avviato lo sviluppo di un nuovo sistema di generazione di energia. Il sistema sonar è stato sviluppato per migliorare le capacità di rilevamento e di elaborazione delle informazioni per i sottomarini di nuova generazione al fine di migliorarne le capacità di combattimento e l'operatività in acque poco profonde. Il prototipo di generazione di energia per lo snorkel è stato sviluppato tra il 2010 e il 2014 e testato tra il 2014 e il 2015. Il prototipo del sistema sonar è stato sviluppato tra il 2010 e il 2013 e testato tra il 2013 e il 2014. Un totale di ¥ 1,3 miliardi sono stati stanziati per finanziare l'alimentazione dello snorkel progetto del sistema di generazione e 4,9 miliardi di yen per il sistema sonar.
Nel 2012 è stata condotta la ricerca sulla modalità strutturale per i sottomarini. In genere, quando si aggiungono nuove apparecchiature a un progetto di sottomarino esistente, la soluzione per integrarlo è estendere la lunghezza del compartimento del sottomarino; che a sua volta aumenta le dimensioni, rafforzando i materiali e il prezzo. Lo scopo della ricerca è ridurre le dimensioni e il prezzo del sottomarino futuro ottimizzando la modalità strutturale del guscio pressurizzato di un sottomarino e ottenere dati tecnici per sviluppare il design del sottomarino futuro. Un prototipo di ricerca è stato sviluppato tra il 2013 e il 2015 e sono stati condotti test interni tra il 2014 e il 2015. Per finanziare la ricerca sono stati stanziati 1,1 miliardi di yen. 
Nel 2016 sono state valutate le proposte di ricerca su un nuovo design dello scafo per ridurre il rumore del fluido idrodinamico e un nuovo sistema sonar per far fronte alla silenziosità di future navi e sottomarini stranieri. La ricerca sulla riduzione del rumore del fluido implementerà tecnologie per ridurre il rumore di interferenza dallo scafo e dal propellente e ridurre i componenti del rumore a bassa frequenza causati dall'interferenza generata tra il flusso attorno allo scafo e il propellente. La valutazione del nuovo sistema sonar prevede che le navi di superficie straniere e i sottomarini operanti negli anni 2030 miglioreranno la loro silenziosità e opereranno in ambienti marini complessi e diversificati; pertanto sono stati ricercati miglioramenti nelle capacità di rilevamento e tracciamento. La prima ricerca è stata avviata tra il 2017 e il 2020, mentre i test saranno svolti tra il 2019 e il 2022.
Nel 2017 è stata valutata la ricerca su un sistema di guida silenzioso. Il sistema di trasmissione silenzioso viene utilizzato per ridurre ulteriormente il rumore emesso dal sottomarino en-light dei miglioramenti apportati alla tecnologia sonar di altri paesi. La ricerca è condotta tra il 2018 e il 2021 e sarà testata tra il 2021 e il 2022. Per questo progetto è stato stanziato un totale di 5,7 miliardi di yen.
Nel 2018 è stata condotta una valutazione su un sistema di accumulo e alimentazione ad alta efficienza. Il progetto mira a migliorare l'efficienza e l'energia del sistema di accumulo e alimentazione di energia ottenendo un'elevata efficienza e miniaturizzazione nel sistema di alimentazione e aumentando la capacità e la densità del sistema di accumulo di energia. La prototipazione avviene tra il 2019 e il 2022 e i test interni per simulare l'installazione su un sottomarino avvengono nel 2023. Per il suo sviluppo vengono utilizzati un totale di 4,4 miliardi di yen.
Il primo sottomarino di questa classe, il Taigei, sarà convertito in un sottomarino di prova. Il motivo del cambiamento è dovuto alla necessità di acquisire un sottomarino di prova dedicato invece di adibire un sottomarino operativo dalle sue operazioni per condurre i test. In questo modo, la JMSDF può aumentare i giorni operativi e rafforzare le attività di monitoraggio con i sottomarini d'attacco, mentre il sottomarino di prova accelererà la ricerca e lo sviluppo.


Design

E’ confermato che il design dello scafo della classe Taigei non differisce molto da quello della classe Sōryū, ma sarà di 100 tonnellate più pesante del suo predecessore. 


Tuttavia, i sottomarini di classe Taigei saranno più avanzati in quanto dotati di apparecchiature più recenti come sistemi sonar e sistemi di generazione di energia per lo snorkeling. 
La classe 'Taigei utilizzerà batterie agli ioni di litio in modo molto simile ai sottomarini JS Ōryū e JS Tōryū.  Il sottomarino probabilmente utilizzerà il siluro Tipo 18, il cui nome di progetto è “G-RX6".
Le unità della classe sono: SS 513 Taigei (2022), SS 514 (2023), SS 515 (2024).

ENGLISH

MHI has launched the first of a new class of submarines for JMSDF equipped with lithium-ion batteries: the SSK 513 Taigei

Japan's Mitsubishi Heavy Industries (MHI) has launched the Taigei, the first of a new class of diesel-electric attack submarines (SSK) for the JMSDF equipped with lithium-ion batteries. (MHI)
The new 3,000-tonne submarine, which was named Taigei (with the operational number SS 513), entered the water on 14 October at a ceremony held at the MHI facilities in Kobe City.
The new unit has a crew of about 70, an overall length of 84 m, a width of 9.1 m, a draught of 10.4 m and a standard displacement of about 3,000 tonnes, which means it is almost the same size as the Soryu class SSK, which are 84 m long, 9.1 m wide, 10.3 m deep and have a standard displacement of 2,950 tonnes.
Taigei means "big whale" in Japanese and was the name of a Japanese Imperial Navy submarine.
The SSK, which will enter service in March 2022, was also called "29SS". This designation refers to the year "Heisei 29" in the Japanese calendar (2017 in the Gregorian calendar).
The new submarine, which cost about 80 billion yen ($758.7 million) to build, is powered by a diesel-electric engine generating 6,000 hp.
JMSDF has confirmed that the new unit is equipped with lithium-ion batteries instead of lead-acid batteries, just like the last two of the 12 Soryu classes for JMSDF: Oryu (SS 511) and Toryu (SS 512). The Oryu was set in March 2020, while the Toryu will be in service in March 2021.
The Taigei class submarines (29SS) are a new class of attack submarines developed for the Japan Maritime Self-Defense Force, successors of the SSK Soryu.

Development

The development of the Taigei class was carried out by a series of research aimed at developing new and improved submarine components to improve the capabilities of the "new generation submarines" that will operate in the years 2020 and beyond. In 2004, an assessment was carried out on the research of new generation submarine systems according to capacity requirements: dive speed, stealth, etc. The research involved the use of simulation technologies to optimise the most efficient design for the submarine and analyse its cost-effectiveness. The technical data obtained were used to improve the design and construction of the new class of submarines. A total of 800 million yen was used to finance the project.
In 2005, evaluations for a new generation of air independent propulsion submarine sonar (AIP) began. The first project aimed to develop a new sonar array with improvements in weight reduction, energy savings and detection capability in response to the increased quietness of future ships and submarines. The second project aimed to develop a new AIP system to extend underwater sustainability for future submarines. The new sonars are mounted on the next generation submarines that will operate from 2020 onwards. Similarly, the new AIP systems will allow submarines to expand their operational areas, including shallow water response. Research on both components was conducted between 2006 and 2008 and tested between 2008 and 2009. A total of 1.5 billion yen and 2.5 billion yen have been allocated to the sonar and AIP projects.
In 2006, an assessment was conducted for the underwater anti-sensing / impact resistance structure. The project involves research into the propeller design and hull shape to reduce noise generation and the submarine structure to improve noise reduction and impact resistance. The research foresees that the new generation submarine uses the structure of the floating floor; the floorboards are fixed to the inner shell by a dampening mechanism to prevent vibrations inside the submarine from coming out and protect against shocks from outside the submarine. A prototype was developed between 2007 and 2011 and tested between 2010 and 2014. Funding of 400 million yen was used to fund the project.
In 2009, research on the power generation system for snorkeling and the sonar system was evaluated. The new power generation system for snorkeling aims to be more compact, quiet and generate more power to improve the operation, survival and stealth of submarines. 
The comparable alternative power generation systems that were examined include the MTU 16V396SE diesel engines used on the Type 212 submarine and SEMT PielstickMotore diesel PA4V200SM. However, it was considered that both engines produced less than the required performance and therefore the development of a new power generation system was started. The sonar system was developed to improve the detection and information processing capabilities for the new generation submarines in order to improve their combat capabilities and shallow water operation. The power generation prototype for the snorkel was developed between 2010 and 2014 and tested between 2014 and 2015. The sonar system prototype was developed between 2010 and 2013 and tested between 2013 and 2014. A total of ¥ 1.3 billion has been allocated to finance the powering of the snorkel generation system project and 4.9 billion yen for the sonar system.
In 2012, research was conducted on the structural mode for submarines. Generally, when adding new equipment to an existing submarine project, the solution to integrate it is to extend the length of the submarine compartment, which in turn increases its size, strengthening the materials and price. The aim of the research is to reduce the size and price of the future submarine by optimising the structural mode of the pressurised shell of a submarine and obtaining technical data to develop the design of the future submarine. A research prototype was developed between 2013 and 2015 and internal tests were conducted between 2014 and 2015. 1.1 billion yen was allocated to fund the research. 
In 2016, research proposals for a new hull design to reduce hydrodynamic fluid noise and a new sonar system to cope with the quietness of future foreign ships and submarines were evaluated. Research on fluid noise reduction will implement technologies to reduce interference noise from the hull and propellant and reduce low frequency noise components caused by interference generated between the flow around the hull and the propellant. The evaluation of the new sonar system predicts that foreign surface ships and submarines operating in the 2030s will improve their quietness and operate in complex and diverse marine environments, so improvements in detection and tracking capabilities have been sought. The first research was launched between 2017 and 2020, while tests will be carried out between 2019 and 2022.
In 2017, research on a silent guidance system was evaluated. The silent drive system is used to further reduce the noise emitted by the en-light submarine by improvements in sonar technology in other countries. The research is being conducted between 2018 and 2021 and will be tested between 2021 and 2022. A total of 5.7 billion yen has been allocated to this project.
In 2018 an evaluation of a highly efficient storage and feeding system was carried out. The project aims to improve the efficiency and energy efficiency of the energy storage and power supply system by achieving high efficiency and miniaturization in the power supply system and increasing the capacity and density of the energy storage system. Prototyping takes place between 2019 and 2022 and internal tests to simulate installation on a submarine take place in 2023. A total of 4.4 billion yen is used for its development.
The first submarine of this class, the Taigei, will be converted into a test submarine. The reason for the change is the need to acquire a dedicated test submarine instead of using an operational submarine from its operations to conduct the tests. In this way, the JMSDF can increase operating days and strengthen monitoring activities with attack submarines, while the test submarine will accelerate research and development.

Design

It is confirmed that the hull design of the Taigei class does not differ much from that of the Sōryū class, but it will be 100 tons heavier than its predecessor. However, the Taigei class submarines will be more advanced as they will be equipped with the latest equipment such as sonar systems and power generation systems for snorkeling. 
The Taigei class will use lithium-ion batteries in a very similar way to the JS Ōryū and JS Tōryū submarines.  The submarine will probably use the Type 18 torpedo, whose design name is "G-RX6".
The class units are: SS 513 Taigei (2022), SS 514 (2023), SS 515 (2024).

(Web, Google, Jane’S, Wikipedia, You Tube)