domenica 26 dicembre 2021

Lo studio Leonardo-Lockheed Martin per il nuovo FVL consegnato alla Difesa italiana


“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

La società Leonardo ha di recente consegnato al Ministero della Difesa uno studio in collaborazione con la società aerospaziale statunitense Lockheed Martin, allo scopo di aprire ad una cooperazione congiunta in materia di elicotteri e/o convertiplani per il programma “Future Vertical Lift”. 
Lo studio progettuale riguarderà: 
  • requisiti, 
  • capacità e mercati,
di un potenziale elicottero medio multi-ruolo e multi-missione basato sull’utilizzo della tecnologia compound. Lo S.M.D. italiano prenderà presto una decisione in merito per l’avvio di una fruttuosa cooperazione tecnologica e di uno sviluppo congiunto con gli Stati Uniti relativo ad una nuova macchina per le Forze Armate italiane e sicuramente anche per l’export militare e/o civile.



Se son rose, fioriranno

L'Italia intenderebbe utilizzare i fondi dell'Unione Europea per finanziare programmi di tecnologia per la difesa, anche per la messa a punto degli aeromobili “FVL - Future Vertical Lift” di nuova generazione. Tale avanzatissimo programma statunitense, è stato di recente inserito tra i possibili obiettivi di investimento per la difesa italiani. Sono necessari i finanziamenti del Recovery Fund da 750 miliardi di € dell'Unione Europea, concepito per aiutare gli stati membri europei a rilanciare le loro economie dopo la pandemia  da COVID19 originata dall’iniziale inerzia del governo cinese, dell’O.M.S. e dalle troppe titubanze occidentali.
L’Italia dovrebbe ricevere la quota maggiore, con un totale di poco più di 200 miliardi di € in sovvenzioni e prestiti. Sarebbero in corso approfondimenti tecnici per investire il denaro, concentrandosi sulla creazione di posti di lavoro, tecnologie della difesa, tecnologie verdi, programmi digitali che includono l'estensione dell'accesso a Internet a banda larga e la costruzione di nuove linee ferroviarie e ospedali. I finanziamenti per la difesa permetterebbero un salto tecnologico nella ricerca, innovazione e la costruzione di piattaforme dual use ad altissime prestazioni con un ridotto impatto ambientale, sicurezza informatica totale e innovazione digitale; in particolare in progetti di "velivoli di sesta generazione del programma Tempest, "tecnologia sottomarina avanzata", tecnologia di aeromobili e sottomarini senza pilota, intelligenza artificiale e navi da guerra. Anche i nuovi sviluppi nella propulsione marina potrebbero essere al centro dei finanziamenti navali.
Nella lista sarebbero inseriti gli "Elicotteri FVL di nuova generazione” dell’US ARMY, il programma Future Vertical Lift suddiviso in diversi progetti, tra cui un velivolo Future Attack Reconnaissance (FARA), con Sikorsky e Bell di Lockheed Martin scelti per costruire prototipi.
Bell e un team Sikorsky-Boeing stanno mettendo a punto velivoli dimostrativi tecnologici per la prossima generazione di aeromobili dell’esercito statunitense: il Future Long-Range Assault Aircraft (FLRAA). Bell ha trascorso quasi tre anni di voli di prova per il suo convertivano “V-280 VALOR”, mentre la Sikorsky sviluppava il suo SB-1 DEFIANT.
L'esercito statunitense ha confermato di recente che otto eserciti in tutto il mondo avevano già espresso interesse per i programmi FVL e sarebbero in corso accordi bilaterali. Il ministro italiano per gli Affari europei, ha ribadito che qualsiasi suggerimento su come sarà utilizzato il denaro dell'UE in Italia era ancora molto lontano dalla conferma.
Gruido Crosetto ha detto di essere ansioso di vedere i programmi della difesa entrare nella rosa dei candidati finalisti, iniziando con il coinvolgimento con il programma statunitense FVL. "È fondamentale", ha detto. "Stiamo parlando di un elicottero più veloce e abbiamo un leader mondiale nel settore degli elicotteri", ha detto, riferendosi al campione italiano della difesa Leonardo. "Non possiamo ignorarlo", ha aggiunto. "In generale, l'aeronautica ha bisogno di aiuti di Stato in tempi normali, ed è certamente un settore che è stato influenzato dal Covid-19", ha detto.
Lockheed Martin, proprietaria della Sikorsky, sta già discutendo con Leonardo sulle modalità di collaborazione per lo sviluppo della tecnologia FVL. Le discussioni riguardano il lavoro su di una versione civile di medie dimensioni dell'elicottero con motore coassiale, con possibili anche versioni governative. Lockheed Martin è interessata ad un partner europeo per gestire le vendite europee e condividere i costi e il rischio.
Tuttavia, un ostacolo per Leonardo sarebbe la necessità di continuare a sviluppare il proprio aeromobile a rotori basculanti AW609. Un secondo importantissimo programma che sta conducendo Leonardo è l’AW-249, il probabile sostituto dell'elicottero d'attacco AW-129 Mangusta.




Il Future Vertical Lift (FVL) è un piano per sviluppare una famiglia di elicotteri militari per le forze armate degli Stati Uniti e degli alleati. Dovranno essere sviluppate cinque diversi aeromobili, condividendo hardware in comune come: 
  • sensori, 
  • avionica, 
  • motori 
  • e contromisure. 
Gli USA hanno intrapreso il programma sin dal 2004. L’FVL ha lo scopo di sviluppare i sostituti degli elicotteri UH-60 Black Hawk, AH-64 Apache, CH-47 Chinook e OH-58 Kiowa. Il precursore dell’FVL è il programma Joint Multi-Role (JMR ).
Dopo un decennio di guerre asimmetriche dall'operazione Iraqi Freedom e dall'operazione Enduring Freedom, il Dipartimento della Difesa degli Stati Uniti ha scoperto che la flotta di aeromobili dell'esercito americano si stava invecchiando troppo in fretta. Le operazioni di combattimento facevano volare gli elicotteri cinque volte più che in tempo di pace. I produttori hanno comunque ricostruito e aggiornato le famiglie di aeromobili esistenti senza sviluppare altre piattaforme originali. Il concetto Future Vertical Lift (FVL) è quello di creare un nuovo rotorcraft che utilizza nuove tecnologie, materiali e design che permettono una maggiore velocità, una maggiore autonomia, un maggior carico utile, più affidabilità, più facilità di mantenzione e di utilizzo, con costi operativi inferiori ed una impronta logistica inferiore. 
L’FVL creerà una famiglia di sistemi per sostituire la maggior parte degli elicotteri dell'esercito. Le fasi Joint Multi-Role (JMR) forniranno dimostrazioni tecnologiche. JMR-TD svilupperà la piattaforma aerea; JMR Fase I svilupperà il veicolo aereo; JMR Fase II svilupperà sistemi di missione. L’Us Army ha avviato un programma per i nuovi motori dell’FVL nel 2016.
Il Future Vertical Lift è stato istituito nel 2009 come iniziativa, non ancora una soluzione, dal Segretario della Difesa per concentrare tutte le capacità di sollevamento verticale del DoD e lo sviluppo tecnologico, oltre a mantenere le capacità ingegneristiche a lungo termine. Nell'ottobre 2011, il Vice Segretario alla Difesa ha emanato il Piano strategico FVL per delineare un approccio comune per i velivoli a sollevamento verticale di prossima generazione per tutti i servizi militari. Il piano strategico ha fornito le basi per sostituire l'attuale flotta con capacità avanzate, dando forma allo sviluppo di velivoli a sollevamento verticale per i prossimi 25-40 anni. Indica che l'80% dei punti di decisione per la flotta di sollevamento verticale DoD per estendere la durata, mandare in pensione o sostituire con una nuova soluzione per i prossimi otto-dieci anni. L’attuazione del piano strategico FVL avrà un impatto sulle operazioni di trasporto aereo verticale per i prossimi 50 anni. La Marina degli Stati Uniti è un partner dell'esercito nello sforzo, quindi un derivato dell’FVL dovrà essere utilizzato nel programma MH-XX della Marina per sostituire gli elicotteri MH-60S / R del servizio.

Configurazioni

Tre dimensioni sono state pianificate nel 2009, poi quattro e cinque (che possono o meno essere dello stesso progetto) sono previste per sostituire 25 tipi di aeromobili attualmente in servizio:
  • JMR-Light: versione Scout per sostituire l' OH-58 Kiowa; introduzione prevista per il 2030. Implementato come programma Future Attack Reconnaissance Aircraft nel 2018
  • JMR-Medio-Leggero
  • JMR-Medium: versioni di utilità e attacco per sostituire l'UH-60 Black Hawk e l'AH-64 Apache; l'introduzione è stata pianificata per il 2030. Implementato come programma Future Long Range Assault Aircraft nel 2019.
  • JMR-Heavy: versione cargo per sostituire il CH-47 Chinook; introduzione prevista per il 2035, anche se Boeing prevede il 2060.
  • JMR-Ultra: Nuova versione ultra-dimensionata per velivoli a sollevamento verticale con prestazioni simili a velivoli da trasporto tattico ad ala fissa, come il C-130J Super Hercules e l'Airbus A400M Atlas; introduzione prevista per il 2025. Secondo il Comitato per i servizi armati della Camera degli Stati Uniti, tre diverse configurazioni di velivoli JMR - un elicottero convenzionale, un elicottero composto a rotore rallentato ad ala grande e un convertiplano - erano allo studio a partire dall'aprile 2013.

Requisiti di progettazione

Sebbene i requisiti siano ancora in fase di perfezionamento, il concetto teorico di un nuovo velivolo deve raggiungere velocità di 230 kn (260 mph; 430 km/h), trasportare fino a 12 truppe, operare in condizioni di "alta temperatura" ad altitudini di 6.000 piedi (1.800 m) e temperature di 95° F (35° C), e hanno un raggio d’azione di 263 mi (424 km) con una autonomia operativa di 527 mi (848 km). I set di missioni dovranno includere trasporto merci, servizi di pubblica utilità, esplorazione armata, attacco, assistenza umanitaria, evacuazione medica, guerra antisommergibile, guerra anti-superficie, ricerca e salvataggio di terra / mare, supporto di guerra speciale, rifornimento verticale, contromisure per mine aviotrasportate e altri. La famiglia di aeromobili FVL dovrà avere capacità di volo opzionalmente pilotate o autonome.
Nel marzo 2013, l’esercito Usa ha chiesto all'industria di presentare proposte per uno sforzo chiamato progettazione e analisi concettuale del motore alternativo. Sebbene i requisiti formali per la famiglia di sistemi FVL non siano stati ancora stabiliti, dovranno avere caratteristiche di volo stazionario, velocità, autonomia, carico utile ed efficienza del carburante "al di là di qualsiasi attuale rotorcraft". Ciò potrebbe richiedere un aereo in grado di librarsi a 10.000 piedi (3.000 m) e navigare a 30.000 piedi (9.100 m). Le capacità dovranno includere una buona manovrabilità in hover ad alta quota.
Il motore richiederà configurazioni alternative e avanzate del motore/sistema di alimentazione che consentano una maggiore capacità di missione, come il miglioramento del tempo sulla stazione, l'aumento del raggio di missione e un funzionamento più silenzioso. A causa delle diverse configurazioni della cellula, sono allo studio potenze da 40 shp (30 kW) a 10.000 shp (7.500 kW). Da una a quattro aziende possono essere aggiudicate un contratto con lavori completati in 18 mesi.
Lockheed Martin sta sviluppando un unico "sistema di missioni comuni" che potrebbe essere integrato negli aerei FVL leggeri, medi, pesanti e ultraleggeri. Il sistema potrebbe far risparmiare all’Us Army miliardi di dollari durante l'approvvigionamento ed il sostegno, eliminando la necessità di formare personale di manutenzione, formatori e personale in più sistemi. Un componente è un casco derivato da quello utilizzato sull'F-35 Lightning II che utilizza una tecnologia di apertura distribuita che utilizza sensori integrati per consentire ai piloti di vedere "attraverso" l’aereo.





Concorrenti selezionali del JMR:
  • Bell - Bell Helicopter ha proposto un convertiplano di terza generazione per il programma FVL. Bell ha cercato comunque partner per il supporto finanziario e tecnologico, sebbene la società non avesse bisogno di assistenza. Nell'aprile 2013, Bell ha rivelato il suo design del tiltrotor, chiamato Bell V-280 Valor. È progettato per avere una velocità di crociera di 280 nodi (320 mph; 520 km / h), un raggio di 2.100 miglia nautiche (2.400 mi; 3.900 km) e un raggio di combattimento da 500 a 800 nmi (580-920 mi; 930 –1,480 km). È dotato di una coda a V, un'ala con nucleo in carbonio a celle grandi con fusoliera in composito, sistema di controllo di volo fly-by-wire ridondante triplo, carrello di atterraggio retrattile e due porte laterali larghe 1,8 m per un facile accesso. Il V-280 è insolito in quanto solo il sistema del rotore si inclina, ma non i motori. Il dimostratore previsto è di medie dimensioni e trasporta quattro membri dell'equipaggio e 14 truppe; deve essere costruito su una scala del 92% o superiore. Bell dice che stanno investendo quattro volte l'importo del governo. Bell ha suggerito che il loro progetto potrebbe essere pronto per i programmi di sostituzione dell'elicottero di altri servizi prima che l'esercito sia pronto per aggiudicare un’offerta.





  • Sikorsky / Boeing - SB> 1 Defiant (o "SB-1") è la voce Sikorsky Aircraft e Boeing per il programma. È un elicottero composto con rotori coassiali rigidi e due motori Honeywell T55. Il suo primo volo è avvenuto nel marzo 2019.

Ex concorrenti:
  • AVX - AVX Aircraft ha proposto un aereo con il loro rotore coassiale e il design a doppia ventola intubata che fornisce una migliore sterzata e un po 'di potenza in avanti aggiuntiva. Il loro JMR-TD deve essere costruito su scala del 75%. È in grado di volare a 230 nodi (260 mph; 430 km / h), con il 40% di portanza dalle piccole ali anteriori e il 60% dai rotori da 56 piedi (17 m). Metà della resistenza del design proviene dalla fusoliera e metà dal sistema del rotore, quindi i test in galleria del vento mirano a ridurre la resistenza di un terzo. Il sistema del rotore ha due mozzi a fascio flessibile composito con carenature aerodinamiche che riducono la resistenza sui polsini delle pale e l'albero tra i mozzi. La versione di medie dimensioni si proponeva di pesare 27.000 libbre (12.000 kg), trasportare quattro membri dell'equipaggio e 12 truppe e avere una capacità di sollevamento esterna di 13.000 libbre (5.900 kg). Ha una cabina di 1,8 m × 1,8 m, che è il doppio della dimensione interna dell'UH-60 Black Hawk, e ha una capacità di sollevamento interna di 3.600 kg (8.000 libbre). L'aereo può trasportare 12 militari equipaggiati, doveva disporre di un sistema di alimentazione ausiliario per l'auto-dispiegamento su distanze ed è previsto che possa essere equipaggiato opzionalmente. Le versioni di utilità e di attacco avrebbero dovuto avere il 90% in comune e la stessa velocità. L'aereo di prova doveva essere equipaggiato con i motori GE T706, ma AVX sta cercando di equipaggiare il loro progetto con il motore a turbina a prezzi accessibili avanzato con i suoi 4.800 CV più alti (3.600 kW) di potenza. AVX ha collaborato con Rockwell Collins, General Electric e BAE Systems. Era progettato per essere dotato di porte d'ingresso su entrambi i lati della fusoliera con una grande rampa posteriore per una facile movimentazione del carico. Entrambe le versioni utilizzano un carrello di atterraggio retrattile e la variante di attacco trasporta tutti gli armamenti immagazzinati all'interno fino a quando non è necessario per fornire un design aerodinamico pulito. L'azienda si riferisce al concetto senza nome come un "elicottero coassiale composto innovativo" in grado di raggiungere l'80% della velocità del V-22 Osprey a metà del costo. Doveva essere in grado di librarsi a 6.000 piedi (1.800 m) a temperature di 95° F (35°C) e volare senza rifornimento dalla base dell'aeronautica militare di Travis in California alle Hawaii, una distanza di 2.100 nmi (2.400 mi; 3.900 km).
  • AVX considera la sua posizione di azienda più piccola (con 25 dipendenti, alcuni dei quali hanno lavorato sul V-22) un proprio vantaggio senza un'eredità o un onere delle società di difesa più grandi; se selezionato per fornire un aereo, AVX avrebbe probabilmente avuto un accordo di collaborazione con un'altra azienda in grado di gestire l'assemblaggio, l'integrazione e il supporto alla produzione. Come Sikorsky, l’AVX considerava i coassiali inadatti per il sollevamento pesante.
  • Karem - Karem Aircraft ha proposto un Tiltrotor a velocità ottimale (OSTR), designato come dimostratore TR36TD. Avrebbe avuto due rotori a velocità variabile da 36 piedi di diametro (11 m) alimentati da motori turboshaft esistenti. La versione di serie del TR36D avrebbe avuto una velocità di volo livellata di 360 kn (410 mph; 670 km / h). Karem afferma che la sua configurazione OSTR a velocità variabile offre vantaggi in termini di peso, trasmissione ed efficienza aerodinamica e propulsiva. Avrebbe avuto prestazioni di volo stazionarie "robuste" ad alta velocità in quota, maggiore velocità di salita e manovrabilità sostenuta e una portata più lunga rispetto ad altre configurazioni di decollo e atterraggio verticale. Doveva offrire una complessità ridotta, vantaggi intrinseci in termini di sicurezza, manutenzione semplificata e bassi costi di proprietà totali. A partire dal 2016, Karem ha continuato a lavorare sulle versioni del TR36, con l'intenzione di iniziare a testare i rotori intorno al 2018.

Altri

La società EADS stava pianificando di presentare una proposta per la dimostrazione di fase I JMR, che doveva essere basata sull'Eurocopter X³, ma si è ritirata alla fine di maggio 2013 perché Eurocopter avrebbe dovuto trasferire la proprietà intellettuale di X³ negli Stati Uniti, e di concentrarsi sulle offerte per il programma di Esplorazione aerea armata (successivamente annullato). La società ha anche affermato che il costo per lo sviluppo di un rotorcraft ad alta velocità è di gran lunga superiore ai 75 milioni di dollari di finanziamento che sarebbero stati assegnati. La proposta EADS non era totalmente basata sul design X3, ma faceva leva sugli aspetti della sua tecnologia. EADS può ripresentare la sua proposta per FVL quando l'esercito crea requisiti specifici.
Piasecki Aircraft stava offrendo il suo PA61-4 Advanced Winged Compound (AWC). La versione full-compound era progettata per volare a 233 nodi (268 mph; 432 km / h) e utilizzava la loro elica a spinta vettoriale (VTDP), volata in precedenza sul Piasecki X-49. Spingeva l'aereo e aveva un'ala a lunga campata per il sollevamento e l'anti-coppia. L'ala ruotava in beccheggio per un ulteriore controllo del volo e per ridurre il download del rotore in hover. La rimozione dell'ala ma il mantenimento del VTDP ha prodotto la versione composta da 180 nodi (210 mph; 330 km / h), che potrebbe essere utilizzata per le operazioni a bordo. La sostituzione del VTDP con un rotore di coda convenzionale ha prodotto la versione da 160 kn (180 mph; 300 km / h), che era più lenta ma più leggera, più economica e poteva gestire meglio le missioni di sollevamento esterno o di rifornimento verticale. Il progetto della Piasecki non è stato selezionato per la fase Multi-Ruolo congiunta del programma. A partire dal 2016, Piasecki ha ottenuto altri finanziamenti per aggiornare l'X-49 e intende offrire un progetto di elicottero composto alato per FVL.

Sviluppo

Multi-ruolo congiunto

Il 5 giugno 2013, la Bell ha annunciato che il suo V-280 Valor era stato selezionato dall’US ARMY per la fase di dimostrazione tecnologica (TD) Joint Multi-Role (JMR). L'Esercito ha classificato l'offerta come una proposta di Categoria I, il che significa che è una proposta ben concepita, scientificamente o tecnicamente valida, pertinente agli obiettivi del programma e agli obiettivi con applicabilità alle esigenze della missione dell'Esercito, offerta da un appaltatore responsabile con il supporto del personale scientifico e tecnico competente risorse necessarie per ottenere risultati. Il team Boeing-Sikorsky, che ha presentato il progetto dell'elicottero composito ad alta velocità basato sul prototipo X2, ha anche riferito di essere stato invitato a negoziare un accordo di investimento tecnologico per il programma JMR-TD Fase I. I contratti JMR-TD avrebbero dovuto essere assegnati nel settembre 2013, con voli programmati per il 2017. L’AVX Aircraft ha inoltre confermato di essere stato selezionato per la Fase I JMR come partecipante di categoria I. Il loro progetto è un elicottero composito a rotore coassiale con ventole intubate per la propulsione e piccole ali per scaricare i rotori ad alta velocità. L'azienda prevede di costruire un dimostratore in scala del 70% utilizzando i motori General Electric T700 esistenti. La società EADS si ritirò dal programma prima che i progetti fossero stati selezionati e l'aereo Piasecki non fu scelto per continuare lo sviluppo. Il 31 luglio 2013, Boeing e Sikorsky si sono impegnati a investire più del doppio dell'importo che il governo sta spendendo per JMR se la squadra verrà scelta per costruire e far volare un aeromobile definitivo per il programma. Il 6 agosto 2013, la Lockheed Martin ha confermato che offrirà un nuovo pacchetto di equipaggiamento per la missione per soddisfare i requisiti del programma JMR / FVL. La Lockheed incorporerà i futuri standard del software per l'ambiente di capacità aerea nella cabina di pilotaggio e nei sistemi di missione del velivolo per utilizzare la loro avionica, armi e sensori come l' elmetto F-35 . Si prevede che la Boeing e altre società offrano set concorrenziali dell’avionica. Il 9 settembre 2013, la Bell ha annunciato che Lockheed avrebbe iniziato la collaborazione sul progetto del V-280 Valor. Il 2 ottobre 2013, l'esercito americano ha assegnato accordi di investimento tecnologico a AVX Aircraft, Bell Helicopters, Karem Aircrafte Sikorsky Aircraft nell'ambito del programma Joint Multi-Role Technology Demonstrator Phase I. Esistono due tipi generali di proposte: rotori inclinabili con rotori che fungono sia da rotori che da eliche convenzionali ed elicotteri composti che utilizzano rotori verticali ed eliche separate montate posteriormente. AVX e Sikorsky offrono design composti con due rotori controrotanti per fornire un sollevamento verticale. Per il movimento in avanti, AVX utilizza due ventole intubate e Sikorsky utilizza un'unica elica sul retro. Bell offre il Tiltrotor V-280 Valor. Karem Aircraft offre un convertiplano con rotori a velocità ottimale, che consente al velivolo di accelerare o rallentare le eliche a seconda della velocità o delle esigenze di efficienza. Una tecnologia simile è stata utilizzata sull'A160 Hummingbird. JMR-TD non ha lo scopo di sviluppare un prototipo per la prossima famiglia di veicoli o preselezionare una cellula per FVL, ma sviluppare e dimostrare un mix rappresentativo dal punto di vista operativo di capacità, tecnologie e interfacce per indagare su mestieri di progettazione realistici e tecnologie abilitanti. I TIA concedono ai quattro team nove mesi per completare la progettazione preliminare del loro aeromobile, che l'esercito esaminerà e autorizzerà la costruzione di due dimostranti in competizione per volare nel 2017. Mentre c'era un potenziale per una selezione anticipata, le quattro squadre sono concentrate sulle dimostrazioni di volo del 2017. I risultati emergenti di JMR TD Fase 1 verranno utilizzati per informare lo sforzo di FVL in merito alle configurazioni dei veicoli, alla maturità delle tecnologie abilitanti, alle prestazioni e alle capacità raggiungibili. Ciascuna delle quattro squadre ha ricevuto 6,5 milioni di dollari dall’Us Army per tale fase del programma. Il 21 ottobre 2013, i dirigenti della difesa che hanno presentato un'offerta per il programma hanno dichiarato che l'esercito prevede di selezionare due società nel 2014, che svilupperanno poi prototipi per i test di volo nel 2017. La fase I di JMR-TD era focalizzata sulla creazione di un'utilità media la cellula degli aeromobili, mentre la fase II svilupperà sistemi e software di missione sebbene l'integrazione con le cellule non sia pianificata.
Le domande per le valutazioni JMR dovevano essere inserite dai quattro concorrenti entro giugno 2014, con l'esercito che ne selezionava due per costruire dimostratori per volare tra il 2017 e il 2019, ma l'esercito poteva scegliere un veicolo non JMR per FVL e perseguire tipi diversi per diverse classi FVL. Era anche auspicabile la comunanza dei sistemi tra i veicoli e tra le unità militari. Le specifiche si riferivano ad un progetto in grado di eseguire missioni di media utilità e di attacco, con una velocità di crociera di 230 kn (260 mph; 430 km / h) e di librarsi a 6.000 ft (1.800 m) a 95° Temperature F (35° C). Dopo i test di volo e lo sviluppo della tecnologia, JMR terminerà e una richiesta di proposte (RFP) sarà pubblicato aperto a tutte le società per iniziare lo sforzo FVL previsto di $ 100 miliardi. I dimostratori sviluppati sotto JMR sono stati considerati "X-planes" per mettere a punto alcune tecnologie chiave, ma non hanno avuto motori rappresentativi della produzione o architettura di sistemi di missione reali; il JMR mostrerà le tecnologie per consentire all'aviazione ad ala rotante dell’esercito USA di fare il prossimo salto di velocità, portanza, protezione e interoperabilità con l’FVL per il 2030. Il programma è stato intenzionalmente rallentato in parte a causa delle sfide viste nel programma JSF e dei fallimenti dei programmi passati come Future Combat Systems, che è stato annullato dopo che requisiti complessi non potevano essere soddisfatti con budget e tempistiche stabiliti. Un contratto per uno standard comune di architettura comune doveva essere assegnato nel luglio 2014 per i test di laboratorio e la RFP FVL doveva essere emessa nel 2019. Il team Sikorsky-Boeing ha presentato il progetto SB-1 Defiant e il rapporto sui rischi all'esercito a metà giugno per JMR.
L'esercito sta esaminando cinque criteri per selezionare le voci JMR-TD: quanto il progetto avanza gli obiettivi scientifici e tecnologici dei servizi; se il progetto soddisfa le specifiche di prestazione; quanto bene il dimostratore convalida le specifiche; se il concorrente ha rispettato il proprio programma; e se l'azienda ha le capacità e le competenze per effettuare una dimostrazione di volo. Anche con la prospettiva del ritorno del sequestro nell'anno fiscale 2016, il programma JMR sarà probabilmente risparmiato da tagli o cancellazioni a causa del sostegno dell'esercito ai programmi di ricerca e sviluppo. L'aereo dimostrativo avrà una durata di 200 ore di volo e il budget dell'esercito sarà di 240 milioni di dollari. Nel luglio 2014 l'esercito ha deciso quali due concorrenti avrebbero proceduto alla Fase Uno, ma ha tenuto dibattiti sul programma con tutte e quattro le parti per determinare un percorso ragionevole prima di annunciare i vincitori, che dovrebbe avvenire alla fine di agosto o all'inizio di settembre 2014 All'inizio di luglio, l'esercito ha selezionato il team Boeing-Sikorsky per sviluppare la "dorsale digitale" standard JCA (Joint Common Architecture) attraverso la quale i sistemi di missione saranno integrati nel progetto del sistema FVL.

Selezione in basso

L'11 agosto 2014, l’Us Army ha informato i team Sikorsky-Boeing e Bell-Lockheed di aver scelto l’SB-1 Defiant ed il V-280 Valor per continuare con il programma dimostrativo JMR. I progetti degli aerei mostrano che l’US ARMY sta perseguendo progetti sia coassiali che a rotore inclinabile e preferisce appaltatori più grandi e affermati rispetto ad aziende più piccole. AVX Aircraft afferma di essere ancora in trattative con l'esercito e ritiene di poter ancora continuare con un certo livello di lavoro sul programma. La parola ufficiale doveva essere annunciata alla fine di agosto, una volta conclusi i negoziati.




L’esercito USA ha annunciato formalmente la selezione del Sikorsky-Boeing SB-1 e del Bell-Lockheed V-280 il 3 ottobre 2014.

Entrambe le squadre ora costruiranno velivoli dimostrativi tecnologici con test di volo a partire dal 2017. Sebbene AVX e Karem Aircraft non siano stati selezionati, l'esercito è ancora interessato alle tecnologie che hanno offerto.  All'inizio di settembre 2014, un gruppo di esperti di aviazione ha consigliato al personale dell'iniziativa FVL come evitare gli errori commessi dai precedenti sforzi di acquisizione, in particolare l'F-35 Joint Strike Fighter. 
Il pannello aveva tre suggerimenti: dividere il programma in diverse parti gestibili; utilizzare l'esperienza dell'industria elicotteristica commerciale; e ottenere il supporto tempestivo dal Congresso degli Stati Uniti. FVL sta cercando di sviluppare quattro classi di portanza separate, che potrebbero persino diventare cinque se il programma include velivoli di medio sollevamento per la Marina e il Corpo dei Marines degli Stati Uniti, quindi l'assoluta diversità dei requisiti mette in dubbio che un singolo programma possa produrre con successo versioni differenti di un dato progetto. Uno dei problemi principali riscontrati nel programma F-35 è stato quello di avere un unico programma per cercare di soddisfare esigenze diverse con varianti di un medesimo design. È possibile che FVL eviti questo e continui a raggiungere gli obiettivi primari di utilizzare trasmissioni, motori e comunicazioni comuni tra diversi elicotteri in diversi servizi; sebbene i modelli Apache e Black Hawk dell'esercito siano completamente diversi, l' utility UH-1Y Venom dei Marines e AH-1Z Viper, gli elicotteri d'attacco hanno l’85% di parti in comune nonostante l'utilizzo di diverse strutture dei velivoli. È stato possibile risparmiare denaro e tempo utilizzando le tecnologie disponibili dei produttori di elicotteri commerciali, cosa impossibile da fare con l'F-35 ad alte prestazioni. Anche se il JSF si è assicurato partner internazionali e l’FVL per ora non ne ha, i partner sarebbero i benvenuti una volta avviato ufficialmente il programma e la cooperazione di pre-acquisizione da settore a settore è stata consigliata prima che si verifichino accordi da governo a governo. È stato inoltre consigliato di garantire il sostegno del Congresso sin dall'inizio, poiché tenere i legislatori all'oscuro ha causato mancanza di fiducia e l'imposizione di obblighi di rendicontazione per il finanziamento con l'F-35. Poiché i budget per gli acquisti dell’US Army Aviation siano diminuiti del 40% in 3 anni, il finanziamento per l’FVL potrebbe essere in conflitto con la modernizzazione dell'attuale flotta di aeromobili.
Nel gennaio 2015, l'Esercito ha confermato che la categoria FVL-medio sarebbe stata suddivisa in due diverse versioni, una per attacco / ricognizione e una per trasporto di truppe e utilità. Anche se il programma cerca componenti comuni in tutta la flotta, i leader del servizio hanno identificato che sono necessari velivoli di dimensioni diverse per l'attacco e il trasporto di truppe, quindi la stessa cellula non può essere utilizzata per entrambe le missioni; altri servizi possono anche personalizzare le proprie varianti FVL-medium per esigenze specifiche. Le versioni possono anche utilizzare diverse forme di propulsione (un convertiplano e un'elica spintore con pale coassiali), ma nulla sarà certo fino ai risultati dei voli di prova.

(Fonti delle notizie: Web, Google, RID, Wikipedia, You Tube)












































































 

sabato 25 dicembre 2021

BUON NATALE A TUTTI GLI AMICI DEL BLOG!


Che lo Spirito Santo illumini oggi i nostri cuori, perché possiamo riconoscere nel Bambino Gesù, nato a Betlemme dalla Vergine Maria, la salvezza donata da Dio a ognuno di noi, a ogni uomo e a tutti i popoli della terra.

Con la nascita di Gesù è nata una promessa nuova, è nato un mondo nuovo, ma anche un mondo che può essere sempre rinnovato.





 

venerdì 24 dicembre 2021

La Marina Francese testerà in mare l’“HELMA-P”, un nuovo sistema d’armi laser


“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

La direzione generale degli armamenti francese (DGA), la società francese CILAS e la Marine Nationale sono pronti a testare il sistema di armi laser HELMA-P da una nave in mare nel 2022.
La DGA, in collaborazione con CILAS, ha dimostrato la distruzione di un drone da parte di un sistema di armi laser il 7 luglio 2021. Questa dimostrazione ha avuto luogo presso il centro di test missilistici della DGA situato nel sud-ovest della Francia.




Un funzionario della D.G.A. ha confermato: “Sono orgoglioso di aver visto oggi all'opera questa eccellenza. Questo è un esperimento eccezionale. Un drone è stato appena distrutto da un laser ad alta potenza, è stato appena compiuto un passo importante nella lotta contro i droni. Grazie a te, la Francia sta dimostrando oggi di essere all'altezza del compito e in grado di difendersi dai suoi nemici".
Questo sviluppo avviene in un contesto in cui i droni stanno assumendo un posto sempre più importante sul campo di battaglia con l'utilizzo da parte di organizzazioni terroristiche di droni civili – trasformati in droni da ricognizione – o droni d'attacco kamikaze di fabbricazione militare utilizzati nei recenti conflitti.
Il sistema testato è il sistema laser HELMA-P (Laser ad alta energia per applicazioni multiple – Potenza). Il sistema è stato progettato da un rapporto congiunto tra la CILAS e Ariane Group, il cui sviluppo è avvenuto dal 2017 al 2019. Il sistema consiste in una torretta su 2 assi con una serie di sensori ottici e l'arma laser stessa che ha una potenza di 2 Kilowatt. Questa torretta è azionata da un singolo operatore tramite un'interfaccia uomo-macchina. Ha una capacità di raggiungere obiettivi fino a 1 chilometro di distanza, da 3 a 4 volte maggiore rispetto alle tecnologie anti-drone concorrenti, secondo il direttore del dipartimento di innovazione di CILAS.





La DGA ha iniziato i test sin dal 2020. Poiché i risultati sono stati migliori del previsto secondo il responsabile del progetto di ingegneria, i militari sperano di rendere operativo questo sistema sperimentale entro il 2024 per i Giochi Olimpici di Parigi.
HELMA-P, fino ad ora, è stato testato solo da terra. Ma sarà installato anche sui veicoli e sulle navi; lo ha annunciato il ministro della difesa Florence Parly durante l’evento: “Il successo del dimostratore è molto promettente. E’ possibile perfezionare questa tecnologia con i team CILAS. In termini di potenza, autonomia e mobilità: più piccoli saranno i sistemi, più facile sarà l'implementazione. In effetti, ho chiesto che queste armi laser fossero testate sulle navi della Marina francese nella prima metà del 2022".
L'obiettivo primario sarà quello di testare la “stabilità e la qualità dello sparo laser in ambiente marino”.




I test del 7 luglio 2021 a Biscarrosse si sono svolti sotto una forte pioggia e con una copertura nuvolosa bassa; questo è positivo per il futuro del programma.
Oltre alla guerra anti-drone, l'obiettivo è quello di andare oltre e testarlo contro minacce asimmetriche come oggetti galleggianti in mare, navi da attacco veloci in-shore (FIAC) ma anche per disturbi ottici o persino distruzione di antenne.
La nave su cui verrà testato il sistema deve ancora essere resa nota, ma in futuro l'obiettivo finale è quello di equipaggiare l'arma laser su fregate (FREMM, FDI) o pattugliatori che navigano in zone pericolose o costiere da cui possono essere lanciate minacce asimmetriche.
Secondo l’azienda produttrice, le navi producono energia e risorse sufficienti per mantenere in funzione il sistema HELMA-P.
Seguendo l'esempio della Marina degli Stati Uniti, la Marina francese intende proteggere i suoi beni marittimi da droni a basso costo carichi di esplosivi e piccolo mestiere. I droni armati o carichi di bombe sono onnipresenti nei combattimenti moderni e i droni di superficie hanno svolto un ruolo di primo piano in almeno un conflitto in corso, compresa la guerra civile yemenita. 
La società di difesa francese CILAS ha pertanto escogitato un modo per contrastare queste minacce. La sua piattaforma laser HELMA-P può tracciare i droni in volo e abbatterli con un piccolo laser da due kilowatt. Può essere azionato da un singolo utente e ha una portata effettiva di circa mezzo miglio nautico, più o meno alla pari con un sistema di armi standard Phalanx Close-In. Nonostante le sue capacità, è abbastanza piccolo da stare comodamente in un container per un facile trasporto.
La società CILAS ha testato il sistema laser su droni target in Francia dallo scorso anno e finora ne ha abbattuti circa tre dozzine. Dopo le ultime prove terminate il 7 luglio, il ministro delle forze armate francesi Florence Parly ha affermato che visti i risultati promettenti, il sistema meritava un test a bordo di una nave della Marina francese.
In una dichiarazione, la Marine Nationale ha affermato che la torretta HELMA-P ha dimostrato la sua capacità a terra e sarà valutata a bordo di una delle navi del servizio nel 2022. Dopo una prima serie di esperimenti per garantire che il sistema funzioni correttamente nel ambiente marino, il servizio lo porterà in mare e lo testerà contro droni dal vivo.
"La Marina è interessata alle armi laser perché le navi da combattimento hanno una potenza di calcolo molto elevata, spazio, molta energia e capacità di refrigerazione che le predispongono a ricevere laser ad alta potenza", ha affermato il servizio. "Questi sistemi sono in grado di distruggere o danneggiare molte minacce controllandone gli effetti e riuscendo a rinnovare l'ingaggio senza limitazioni".
La Marine Nationale non ha nominato la nave selezionata per il processo, ma una foto che accompagna l'annuncio mostrava la FS Forbin, la fregata da difesa aerea classe Horizon.
Anche la US Navy ha testato un sistema laser anti-drone più potente, LaWS, a bordo della nave trasporto anfibio USS Ponce. 
Anche la Marina tedesca sta da tempo testando un laser terra-aria nella classe da 20 kW con tecnologia fornita dalla Rheinmetall, e il nuovo passo è una fase di prova della durata di un anno a bordo della fregata Sachsen.

(Fonti delle notizie: Web, Google, Navalnews, Maritime executive, Wikipedia, You Tube)












 

La Northrop Grumman ha prodotto e testato con successo il primo Very Lightweight Torpedo (VLWT) per la Us Navy

“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

I siluri sono una linfa vitale per attaccare i sottomarini, così come per i sottomarini quando si affrontano navi di superficie. I sottomarini di solito lanciano siluri grandi e pesanti (533 mm e oltre), che sono a lungo raggio, ad alta potenza e molto furtivi mentre viaggiano verso l’obiettivo ostile. La Northrop Grumman ha prodotto e testato con successo il primo Very Lightweight Torpedo (VLWT) costruito nel settore per la US Navy e le marine alleate.




Leggero, portatile, intelligente

Il prototipo del mini-siluro si basa sul progetto del Laboratorio di ricerca applicata della Pennsylvania State University (PSU-ARL) che è stato distribuito ai produttori dell'industria della difesa sin dal 2016. La società Northrop Grumman, che ha finanziato in modo indipendente la ricerca e lo sviluppo, offrirà i miglioramenti del design del VLWT come risposta al programma Compact Rapid Attack Weapon della Us Navy. Con Defense Systems è pronta a mettere a punto una parte significativa del sistema, insieme a molti altri partner esterni: è una vera collaborazione intersettoriale e industriale che porta a miglioramenti significativi nell'accessibilità e nei flussi di lavoro per la produzione.




Un siluro anti-siluro

Quest’arma subacquea è il primo siluro portatile costruito dalla Northrop Grumman ed è più intelligente di qualsiasi altro siluro mai prodotto. Se viene posizionato nelle stesse acque del bersaglio, il VLWT cercherà, rileverà e si impegnerà con maggiore manovrabilità e capacità anti-siluro rispetto alle sue controparti più grandi. Le sue piccole dimensioni gli permettono di armare il deposito di un sottomarino, consentendogli di difendersi efficacemente da ogni singola minaccia o da un intero sciame ostile. Le sue dimensioni gli consentono di essere schierato da aeroplani o persino da un elicottero, rendendo possibile rilasciare l’VLWT direttamente sopra un sottomarino nemico. Questo è un enorme vantaggio per il cacciatore, rendendo quasi impossibile al sottomarino nemico eludere un colpo.

La Us Navy schiererà presto il primo nuovo siluro

La Us Navy a gennaio 2022 dovrebbe rilasciare una richiesta di proposte per schierare il suo primo siluro completamente nuovo. La selezione da parte della Marina statunitense di una società per la produzione dell'arma di attacco rapido compatto è prevista per febbraio 2022, ha affermato un funzionario dell'industria della difesa.  David Portner, senior program manager della Northrop Grumman per le armi sottomarine, ha dichiarato durante un'intervista che  si aspetta che il contratto per la costruzione del CRAW verrà assegnato nel marzo 2022 dopo la decisione. 

Northrop Grumman in competizione per il contratto di produzione

Il CRAW è una versione offensiva del Very Lightweight Torpedo sviluppato dal Penn State Applied Physics Lab. La versione difensiva è conosciuta come Counter Anti-siluro Torpedo, che differisce dal CRAW solo nel suo software. Northrop Grumman ha di recente presentato il suo progetto. In discussione è la selezione dell'azienda con la migliore disponibilità e capacità di costruire il CRAW in quantità per la produzione in serie, prendendo il prototipo VLWT non progettato per la produzione - progettato da Penn State Applied Physics Lab - in un progetto di produzione e sviluppandolo come All -Up Round CRAW adatto alla produzione. Un'altra autorità transazionale verrà utilizzata per dispiegare il siluro sulle unità della flotta.  
Il VLWT lungo nove piedi è un terzo delle dimensioni dell'Mk54 - il siluro leggero più avanzato della Marina - e pesa poco più di 200 libbre, rispetto al Mk54 da 608 libbre. Con questo vantaggio di peso, una piattaforma può trasportare più siluri o trasportare lo stesso numero a distanze maggiori e dare alla piattaforma una maggiore resistenza. Il VLWT potrebbe essere trasportato da piattaforme di superficie, aeree e sottomarine, con e senza equipaggio.  
Il VLWT sarà trasportato anche da velivoli ASW come gli aerei da pattugliamento marittimo P-8A, gli elicotteri MH-60R e gli UCAV MQ-8 Fire Scout. Durante un'esercitazione sulla tecnologia navale la Northrop Grumman ha dimostrato il dispiegamento di un VLWT da un elicottero surrogato che simulava un Fire Scout.  
Il siluro è dotato di un paracadute per ridurre l'impatto sull'acqua. Il VLWT potrebbe anche essere dotato di un kit munito di ala planante simile a quella del Boeing HAAWC (High-Altitude Anti-submarine Weapon Concept), che è in fase di sviluppo per estendere il raggio di lancio e l'altitudine, nonché una guida di precisione per il siluro Mk54.  
Il mini-siluro VLWT potrà anche essere imbarcato su di una nave da combattimento costiera tramite un veicolo di superficie senza equipaggio o un veicolo subacqueo senza equipaggio. Il modesto peso del CRAW, rispetto all'MK54, consentirebbe ad una piattaforma di trasportare più armi alla stessa distanza o lo stesso numero di armi a una portata o resistenza maggiore.  
Se selezionata, la Northrop Grumman costruirebbe i componenti CRAW a Salt Lake City, Utah, con un fornitore chiave in Colorado. L'integrazione finale sarebbe stata realizzata ad Annapolis.
Il nuovo siluro leggero è derivato da un precedente progetto finanziato dalla Marina degli Stati Uniti. Quest'arma è stata presentata come opzione per il programma Compact Rapid Attack Weapon della US NAVY, che sta cercando di sviluppare un siluro in miniatura che possa anche fungere da intercettore anti-siluro e schierarlo per primo su alcuni sottomarini della classe Virginia entro i prossimi tre a quattro anni.
L'appaltatore della difesa con sede in Virginia ha rivelato per la prima volta l'arma, indicata anche con l'abbreviazione VLWT, il 21 maggio 2020. L'azienda afferma che questo è il primo siluro del suo genere costruito nel settore e che ha finanziato privatamente lo sviluppo. Tuttavia, si basa sulla documentazione di progettazione di un Common Very Lightweight Torpedo (CVLWT) che l'Applied Research Laboratory (PSU-ARL) della Pennsylvania State University aveva sviluppato per l'Office of Naval Research (ONR). Il successo del test della testa cercante del siluro al primo tentativo è una testimonianza dell'approccio di progettazione per l'accessibilità della Northrop Grumman, che ridurrà significativamente i costi senza sacrificare le prestazioni operative.
Visivamente, il VLWT di Northrop Grumman è molto simile al design CVLWT della ARL e utilizza anche un sistema di propulsione a energia chimica immagazzinata (SCEPS) per azionare l'arma. Lo SCEPS nel precedente CVLWT è costituito da un solido blocco di litio che viene poi immerso nel gas esafluoruro di zolfo, che innesca una reazione chimica molto energica. Il vapore risultante aziona una turbina che aziona l'unica elica spingente del siluro. Il sistema SCEPS, già in uso nei siluri di dimensioni più tradizionali, è noto per essere in grado di accelerare rapidamente l'arma rispetto ad altri metodi di propulsione.
Applicando la sua esperienza di ingegneria e produzione, la Northrop Grumman ha migliorato il progetto di base del VLWT per sostituire i componenti ad alto costo e promuovere l'accessibilità, la riproducibilità e l'affidabilità complessive. Quelle sezioni alterate sono state costruite per sicurezza e testate utilizzando l'attrezzatura di prova di PSU-ARL.
La società Northrop Grumman ha una vasta esperienza con i siluri come fornitore principale per i tipi Mk 48 pesanti e Mk 54 leggeri della Marina. Le varianti più recenti dell'Mk 48, che sono attualmente i principali siluri ASW e anti-superficie per i sottomarini della Us Navy, hanno un diametro di 21 pollici, una lunghezza di 228 pollici e un peso di quasi 3.700 libbre. Il CVLWT su cui si basa il nuovo VLWT ha un diametro di soli sei pollici e tre quarti, una lunghezza di circa 85 pollici e un peso di circa 220 libbre è circa 16 volte più leggero dell'Mk 48.
La Marina statunitense aveva già tentato di mettere in campo una versione del CVLWT, nota come Countermeasure Anti-Torpedo (CAT), come parte di un "hard-kill" Anti-Torpedo Torpedo Defense System (ATTDS) per navi da guerra di superficie di alto valore, soprattutto portaerei. L'idea di utilizzare un intercettore anti-siluro fisico ha guadagnato popolarità poiché i siluri avanzati che sono sempre meno vulnerabili alle contromisure più tradizionali sono entrati in servizio in tutto il mondo.
Il programma ATTDS ha purtroppo subito numerose difficoltà tecniche. Il servizio ha annunciato a febbraio 2019 che avrebbe rimosso completamente i sistemi iniziali da cinque portaerei classe Nimitz senza alcuna sostituzione immediata. 
L'attenzione ora è su ciò che la Us Navy chiama Arma di attacco rapido compatto (CRAW). Nella sua più recente richiesta di budget per l'anno fiscale 2021, il servizio ha chiesto più di $ 49,5 milioni su più voci per supportare lo sviluppo del CRAW e dei sistemi associati, uno sforzo che ha descritto come "nuovo inizio" come programma formale di record, piuttosto che un progetto sperimentale.
Secondo le descrizioni del programma nei documenti di bilancio della Marina, il CRAW è un siluro molto leggero che può fungere anche da contromisura per colpire i sottomarini ostili. Questa capacità soddisferà quindi i requisiti della Marina per una contromisura hard kill come delineato nel documento di progettazione delle capacità del sistema di difesa dei siluri sottomarini datato nel 2008.
I piani della Marina per l'anno fiscale 2021 per quanto riguarda CRAW includono l'inizio dello sviluppo del software e dell'hardware per l'arma stessa, nonché aggiornamenti per il sistema di controllo del carico utile del sottomarino AN/BYG-1 e il lanciatore di contromisure esterne standardizzato (ECL). L'AN/BYG-1 è il sistema di combattimento basato su software che praticamente tutti i sottomarini esistenti del servizio, così come alcuni tipi stranieri, impiegano per lanciare i siluri, lanciare armi tramite sistemi di lancio verticale e schierare contromisure. L'ECL è il vero lanciatore che molti sottomarini americani usano per schierare le contromisure anti-siluro esistenti.
Il piano della Us Navy, così com'è ora, è quello di iniziare a integrare il CRAW sui suoi sottomarini d'attacco VIRGINIA Block III e IV tramite modifiche temporanee al loro design a partire dall'anno fiscale 2024, che inizia il 1° ottobre 2023. Successivamente, una serie di modifiche permanenti sarà sviluppata ed integrata su tutte le unità della classe Virginia, compresi i futuri tipi Block V di lunghezza estesa, che avranno un nuovo Virginia Payload Module (VPM) con quattro tubi di lancio verticali di grande diametro. La General Dynamic Electric Boat, che ha progettato la classe Virginia ed è uno dei due costruttori navali che attualmente li realizza, sosterrà questo sforzo.
Tuttavia, non c'è motivo per cui la Marina dovrebbe limitare l'impiego di CRAW su quei sottomarini, specialmente dopo aver svolto il lavoro per integrare le armi nell'architettura comune AN/BYG-1 ed ECL. I sottomarini potrebbero trasportare molti più mini-siluri rispetto ai tipi di peso massimo esistenti, come l'Mk 48, utilizzando gli ECL e altre potenziali opzioni di lancio, incluso l'uso di una qualche forma di inserto per stabilizzare le armi più piccole all'interno dei normali tubi lanciasiluri o del sistema di lancio verticale cellule. Un carico misto di CRAW e Mk 48 darebbe alle navi una maggiore profondità del caricatore e una maggiore flessibilità, specialmente quando si tratta di attaccare obiettivi subacquei e di superficie più piccoli e potenzialmente senza equipaggio.
Come contromisura difensiva anti-siluro, il sistema potrebbe essere particolarmente prezioso per proteggere i sottomarini missilistici balistici di classe Ohio, che sono al centro delle capacità di deterrenza nucleare del secondo attacco dell'America, o i altamente specializzati e ricercati Ohio che sono stati convertiti in sottomarini missilistici guidati, che supportano una vasta gamma di attacchi convenzionali, supporto per operazioni speciali e missioni di raccolta di informazioni. Allo stesso modo, il CRAW potrebbe trovare la sua strada sui futuri sottomarini missilistici balistici della classe Columbia, nonché sulle nuove d'attacco e di grandi carichi utili che si sta appena iniziando ad esplorare a livello concettuale. Potrebbe essere un'opzione anche per le flotte di grandi veicoli sottomarini senza equipaggio UUV e XLUUV.
Il siluro compatto potrebbe avere anche usi più nuovi, incluso come nuova mina navale o come arma per navi di superficie o aerei più piccoli, compresi i tipi senza equipaggio. 
La Northrop Grumman ha effettivamente dimostrato come un elicottero senza equipaggio, come il prossimo MQ-8C Fire Scout della Marina, un altro dei prodotti dell'azienda, potrebbe impiegare un CRAW durante una serie più ampia di esperimenti. È anche interessante notare i paralleli tra il CRAW e lo sviluppo di missili aria-aria compatti per aumentare la capacità numerica dei caccia da combattimento e che potrebbero anche essere in grado di abbattere le minacce in arrivo.
La guerra sottomarina e ASW ha visto una sorta di rinascita all'interno della US NAVY negli ultimi anni, guidata in gran parte dagli sviluppi tra potenziali avversari vicini. La Russia ha lavorato per aumentare la sua attività sottomarina, in particolare nell'Atlantico, e la Cina continua ad espandere le sue flotte sottomarine. Entrambi i paesi stanno costruendo anche tipi nuovi e più avanzati. Negli ultimi anni anche altri possibili avversari americani più piccoli, come la Corea del Nord e l'Iran, hanno ampliato le capacità delle loro flotte di sottomarini. Sottomarini diesel-elettrici avanzati, compresi quelli molto silenziosi con i sistemi di propulsione indipendente dall'aria (AIP), che li rendono molto difficili da rilevare, si sono costantemente moltiplicati in tutto il mondo.
La Marina statunitense ha risposto con vari sforzi per migliorare le proprie capacità di guerra sottomarina e antisommergibile, incluso CRAW, nonché per sviluppare tattiche, tecniche e procedure nuove e migliorate per contrastare le minacce esistenti e future. E’ chiaro che gli USA hanno bisogno di capacità avanzate di guerra sottomarina ora più che mai. La messa in campo del VLWT aumenterà la letalità sottomarina e consentirà concetti operativi innovativi per più piattaforme di combattimento.
Northrop Grumman VLWT e il programma CRAW generale della Us Navy offrono il potenziale per capacità rivoluzionarie per i sottomarini statunitensi, tra le altre piattaforme, e sembrano destinati a diventare una realtà negli anni a venire.

(Fonti delle notizie: Web, Google, Northrop-grumman, Seapowermagazine, Thedrive, Wikipedia, You Tube)

















 

Le EMALS o Electromagnetic Aircraft Launch System e il sistema d’arresto imbarcato “Advanced Arresting Gear (AAG)” per la nuova portaerei della Marine Nationale

“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

Il governo statunitense ha approvato la possibile vendita, tramite Foreign Military Sales, dell’EMALS o Electromagnetic Aircraft Launch System e del sistema d’arresto imbarcato “Advanced Arresting Gear (AAG)” alla Marine Nationale per 1,3 miliardi di $.
I sistemi in questione verranno imbarcati sulla nuova portaerei nucleare francese “Porte-Avions Nouvelle Génération” da 75.000 tonn di dislocamento che sostituirà la Charles de Gaulle a partire dal 2040.
Le catapulte consentiranno di far decollare il caccia di 6^ generazione FCAS/SCAF in sviluppo per conto di Francia, Germania e Spagna.
Prosegue pertanto la “tradizione” statunitense, impiantistica indispensabile ai ponti di volo francesi; anche la Charles de Gaulle utilizza catapulte a vapore derivate da quelle della classe Nimitz della Us Navy.

LE NUOVE EMALS

Le catapulte elettromagnetiche sono da tempo in corso di sviluppo operativo sulla portaerei USS Gerald Ford; chiaramente, assicureranno un notevole miglioramento rispetto alla vecchie catapulte a vapore con la possibilità di far decollare aerei più pesanti oppure molto leggeri in minor tempo.


Ulteriori vantaggi delle EMALS sono: 
  • un minore peso, 
  • minore necessità di grandi quantitativi di acqua demineralizzata che richiede un grande consumo di energia elettrica,
  • una catapulta elettromagnetica di 91 metri è in gradi di accelerare un aereo di 45 tonn fino a 240 chilometri orari.
Comunque, ad oggi, i problemi di affidabilità delle EMALS non sarebbero stati ancora pienamente risolti ed i guasti insorgono ancora troppo frequentemente. L’U.S. Navy, unitamente alla General Atomics, hanno già messo a punto diverse modifiche per raggiungere l’obiettivo di 4.166 MCBOMF (Mean Cycles Between Operational Mission Failure) dai 48 MCBOMF rilevati durante i 3.975 lanci condotti nella PSA (Post-shakedown Availability).

IL SISTEMA D’ARRESTO “AAG”

L’Advanced Arresting Gear (AAG) è un sistema che permette l’arresto dei velivoli sul ponte di volo in modo graduale impiegando un sistema di “turbine ad acqua” in luogo dei sistemi idraulici Mk 7 presenti sulle datate portaerei classe Nimitz. 




Anche per tale sistema non va ancora sempre tutto per il meglio e sono pertanto in corso diversi interventi per renderlo più affidabile.

LA PORTAEREI NUCLEARE PANG DELLA MARINE NATIONALE

La nuova portaerei nucleare francese avrà: 
  • un dislocamento di 75.000 tonnellate, 
  • una lunghezza di 300 metri, 
  • una larghezza di 80 metri, 
  • sarà dotata di un apparato motore a propulsione nucleare,
  • La carena della nave avrà tre assi, 
  • altrettante eliche,
  • una velocità massima di circa 27 nodi,
  • un equipaggio con il personale di comando e di di circa duemila uomini.
La nuova portaerei avrà un’isola unica piuttosto arretrata verso l’area di poppa con ponte angolato di generose dimensione e di due ascensori principali che collegheranno il ponte di volo all’hangar sottostante. Utilizzerà anche due ascensori minori di servizio per il munizionamento. 
Il Gruppo imbarcato di volo sarà completato da due o tre Northrop Grumman E-2D Advanced Hawkeye per la sorveglianza radar ed il controllo avanzato e dagli elicotteri NH-90 NF Caiman per missioni antisom e dai nuovi H160M Guepard per missioni SAR e collegamento.
La costruzione della nuova portaerei impegnerà circa duemila tra tecnici ed operai tra Loira, Bretagna e Sud della Francia. La nave sarà impostata nel 2025 e dovrebbe essere in mare nel 2036 per le prove di accettazione. I costi stimati ammontano a 4,5 miliardi di €. Al momento nella Legge di Programmazione Militare 2019-2026 sono stanziati solo 900 milioni di € di cui 117 per il prossimo anno. Peraltro, nel 2018 sono stati già spesi 40 milioni di € per gli studi iniziali.

Naval Group ha di recente consegnato ai media di tutto il mondo un “rendering” di quella che è attualmente conosciuta come Porte Avion Nouvelle Generation, o PANG, che si traduce in New Generation Aircraft Carrier.

Macron ha fatto l'annuncio l'8 dicembre 2020, durante una visita a Framatome, una società francese che costruisce reattori nucleari e apparecchiature associate; questa società è pronta a fornire i reattori nucleari per la nuova portaerei di circa 75.000 tonn. Il governo francese ha anche una partecipazione di controllo in questa azienda, che ha costruito gli impianti del reattore per la Charles de Gaulle, tramite la società di servizi elettrici Électricité de France.
“La Charles de Gaulle, come noto, giungerà alla fine della sua vita operativa  nel 2038. La futura portaerei equipaggerà la nostra Marine Nationale”, ha ribadito il presidente Macron. “Il vostro impianto a Le Creusot, che produce da molto tempo parti essenziali per la nostra marina, produrrà, tra l'altro, molte parti importanti del reattore nucleare della futura portaerei, forgiandole e lavorandole proprio qui. … Con queste scelte confermiamo la volontà della Francia di preservare la sua autonomia strategica".
Il “rendereing” che Naval Group e il Ministero delle forze armate francese hanno pubblicato online mostra un progetto di tipo Catapult Assisted Take-Off Barrier Arrested Recovery (CATOBAR) con un ponte angolato e un'isola principale relativamente piccola verso l'estremità posteriore destra del ponte di volo. La Charles de Gaulle ha anche una configurazione CATOBAR e, al momento, la Francia è tra le poche marine ad operare con portaerei di questo tipo. Oltre agli Stati Uniti, anche la Cina sta ora costruendo un vettore configurato per CATOBAR; anche l'India ha espresso interesse ad acquisire una nave di questo tipo.
Florence Parly, ministro francese delle forze armate, ha fornito alcuni dettagli sulle specifiche e sulle capacità pianificate della nuova portaerei PANG. La futura portaerei sarà lunga poco più di 984 piedi e dislocherà circa 75.000 tonnellate. La Charles de Gaulle è lunga circa 858 piedi e disloca solo 42.500 tonnellate. "L'espressione" 42.000 tonnellate di diplomazia "dovrà quindi cambiare in" 75.000 tonnellate ..."", ha scritto Parly.
La decisione di scegliere di nuovo una portaerei a propulsione nucleare è stata duplice. In primo luogo, darà alla nave una autonomia praticamente illimitata e, in secondo luogo, aiuterà la Francia a mantenere la sua base industriale nucleare. Oltre al carburante ancora necessario per il gruppo aereo di volo “FCAS” e “UCAV”, la nave dovrà comunque mantenere scorte di cibo e acqua anche per il personale a bordo.
Due reattori nucleari K22 saranno il fulcro del sistema di propulsione della nave e spingeranno la nave a velocità di oltre 27 nodi, oltre a fornire energia elettrica per i vari sistemi di bordo, incluse catapulte elettromagnetiche statunitensi della General Atomics, la stessa società che ha progettato e costruito l' Electromagnetic Aircraft Launch System (EMALS) per le portaerei dell’US NAVY classe Ford. Non è chiaro se la portaerei PANG avrà anche un sistema di arresto a controllo elettronico, come l' Advanced Arresting Gear (AAG) imbarcato sulle Ford, un altro prodotto della General Atomics.
In linea di principio, i sistemi di lancio di aeromobili elettromagnetici e di recupero controllati elettronicamente possono anche essere sintonizzati in modo più fine con aeromobili e equipaggiamenti specifici, che vanno da tipi imbarcati molto pesanti fino a quelli molto leggeri. Ciò contribuirebbe a ridurre lo stress strutturale sulle cellule degli aeromobili durante le fasi di lancio e quando tornano sulla nave, riducendo le esigenze di manutenzione e la logistica. La US Navy ha anche affermato che il suo EMALS, quando funzionerà come previsto, contribuirà ad aumentare il rateo giornaliero delle sortite.
La nuova unità avrà un equipaggio di circa 2.000 tra ufficiali, sottufficiali e marinai, ma non è chiaro se questo includa aviatori che saranno assegnati al gruppo di volo della nave. Dato che la dimensione combinata tipica dell'equipaggio di Charles de Gaulle più la sua ala aerea è di circa 2.000 membri del personale, potrebbe indicare che la dimensione stimata dell'equipaggio PANG del ministro francese tiene conto di entrambi gli elementi. Se fosse vero, è interessante che la portaerei PANG imbarcherà un equipaggio identico a quello della Charles de Gaulle, il che rivela che la nuova unità integrerebbe funzionalità e tecnologie avanzate per ridurre vari carichi di lavoro dell’equipaggio. 
Il vettore sarà in grado di ospitare circa 30 jet da combattimento che potrebbero inizialmente essere i caccia Dassault Rafale-M; l'obiettivo finale è che la nave trasporti una versione del caccia furtivo di nuova generazione (NGF) che ora è in fase di sviluppo come parte del programma Future Air Combat System (FCAS). 
Francia e Germania hanno avviato insieme il programma FCAS nel 2017 e la Spagna ha annunciato l'intenzione di unirsi allo sforzo l'anno successivo. Dassault sarà l'appaltatore principale per la NGF. Il consorzio europeo per l'aviazione Airbus sta guidando lo sviluppo di droni di tipo "leale wingman", noti anche come " vettori remoti ", per il programma FCAS. 
Il concept art di Naval Group mostra gli NGF sul ponte di volo. Mostra anche un velivolo di allarme e controllo AEW E-2 Hawkeye ed un elicottero NH90, entrambi in servizio con la “Marine Nationale”. 
I vettori remoti, o un veicolo aereo da combattimento senza pilota (UCAV) completamente autonomo, come un derivato del Dassault nEUROn, che ha preso parte a una dimostrazione insieme a Charles de Gaulle nel 2016, potrebbero anche essere aggiunti al Gruppo di volo imbarcato della PANG in un prossimo futuro. Le catapulte elettromagnetiche della nave saranno un grande vantaggio per qualsiasi futuro drone imbarcato, poiché sono molto più adatte al lancio di aerei più piccoli e leggeri rispetto alle tradizionali catapulte a vapore.
E’ importante ricordare che il progetto PANG è ancora nelle prime fasi di sviluppo; gran parte della nave, compresi i sensori, i radar ed i sistemi difensivi, deve ancora essere finalizzata. 
Il requisito chiave del programma è chiaramente la necessità di avere la nave in servizio entro il 2038, quando la Marina francese prevede di dismettere per raggiunti limiti d’età e per le note problematiche tecniche la vecchia Charles de Gaulle. 
Vale anche la pena notare che la Francia ha esplorato possibili nuovi concetti di vettore dall'inizio degli anni 2000, poco dopo l'entrata in servizio di Charles de Gaulle. Furono presi in considerazione vari progetti per una potenziale Porte Avions 2 (PA2) o Portaerei 2, incluso un progetto CATOBAR derivato dalla forma dello scafo della classe Queen Elizabeth II della Royal Navy britannica. Nel 2013 è stato pubblicato un white paper delle forze armate francesi che comunicava che il progetto PA2 era stato annullato.
Le autorità francesi sembrano ora molto impegnate nel programma PANG: il nuovo progetto sembrerebbe destinato a fornire alla “Marine Nationale” un nuovo vettore con capacità significativamente migliorate rispetto alla Charles de Gaulle.
Nell'ottobre di quest’anno, la società tecnologica nucleare francese Framatome ha annunciato il lancio di Framatome Defense per promuovere le attività di difesa dell'azienda e afferma il proprio impegno e rafforza il proprio contributo a questo settore strategico. Framatome ha supportato il settore della difesa francese per decenni con un focus sui componenti della Marina francese, in particolare per i programmi sottomarini e la portaerei Charles de Gaulle. L'azienda contribuisce anche all'innovazione per i principali programmi in corso come gli SSN Barracuda ed i nuovi sottomarini lanciamissili strategici SNLE3G.

Come già riportato in precedenza, la Porte Avion Nouvelle Generation o portaerei di nuova generazione, sarà molto più lunga e molto più pesante dell'attuale Charles de Gaulle; avrà:
  • una lunghezza di 300 metri, 
  • una larghezza di 80 metri,
  • un dislocamento di oltre 75.000 tonn,
  • Nucleare (CVN) con due reattori K22 (2 x 220 MW termici),
  • Lunghezza tra 285 e 295 metri,
  • Velocità massima: da 26 a 27 nodi (simile a  Charles de Gaulle),
  • potenza propulsiva di circa 80 MW con tre o quattro linee d’asse,
  • Potenza totale circa 110 MW, compresa la centrale elettrica,
  • 32 caccia di nuova generazione, 
  • 2-3 E-2D Advanced Hawkeyes, 
  • un numero ancora da determinare di vettori remoti / UCAV,
  • due elevatori laterali con capacità di sollevamento di 40 tonnellate,
  • Tre catapulte elettromagnetiche da 90 metri (EMALS) di General Atomics,
  • Ponte di volo: 16.000 m²,
  • Hangar per aerei: 5.000 m²,
  • Equipaggio: 900 e 1080 marinai (escluso l'elemento aereo da 550 a 620 marinai) con un comfort maggiore rispetto a  Charles de Gaulle,
  • Radar Thales SeaFire,
  • PAAM con missili terra-aria MBDA ASTER per l’autodifesa della portaerei,
  • RapidFire CIWS.

Il primo taglio dell'acciaio è previsto per il 2025, mentre le prove in mare inizieranno nel 2036; la messa in servizio con la Marina francese avverrà nel 2038, che corrisponde alla radiazione della vecchia Charles de Gaulle.
La portaerei sarà a propulsione nucleare, permettendo così di mettere a frutto e al tempo stesso alimentare la filiera francese del nucleare, sia civile che militare in quanto i reattori della DE GAULLE e degli SSBN classe LE TRIOMPHANT sono derivati dai reattori per le centrali nucleari civili. 
La PANG verrà costruita a Saint Nazaire e sarà dimensionata per accogliere caccia della classe delle 35 t a pieno carico, ovvero la classe di peso ipotizzata per lo SCAF/FCAS, e di vari velivoli teleguidati e/o autonomi.






La nave quindi avrà una configurazione classica, con una piccola isola ed un ponte di volo sgombro, scelta simile alle portaerei statunitensi classe FORD. Il costo del programma sarà pari ad oltre 7 miliardi di €, di cui 442 milioni stanziati nel 2021. Come già detto, le prove in mare sono previste per il 2036. Macron era accompagnato dal Ministro dell’Economia Bruno Le Maire, dal Ministro della Trasformazione Ecologica Barbara Pompili e dal Ministro delle Forze Armate, Florence Parly.

(Fonti delle notizie: Web, Google, Aresdifesa, Wikipedia, You Tube)