mercoledì 29 gennaio 2020

L'AMSTc (Advanced Medium STOL Transport competition): concorso indetto negli anni ’70 dall'USAF per sostituire i C-130 Hercules.



L'AMSTc (Advanced Medium STOL Transport competition): concorso indetto negli anni ’70 dall'USAF per sostituire i C-130 Hercules; dopo anni di sperimentazioni, nacque finalmente il BOEING C 17 GLOBEMASTER III !




Uno dei due finalisti era il Boeing YC-14 era un bimotore turboventola da trasporto tattico ad ala alta con caratteristiche STOL realizzato dall'azienda statunitense Boeing negli anni settanta.
Proposto come il McDonnell Douglas YC-15 nel programma AMST della USAF rimase, come il concorrente, allo stadio di prototipo per l'avvenuta cancellazione del programma.

Storia del progetto

Nel 1971 la United States Air Force promosse una serie di programmi di sviluppo per la valutazione di nuovi velivoli atti a sostituire il parco velivoli esistenti, il Lightweight Fighter (LWF) per un aereo da caccia leggero ed il Advanced Medium STOL Transport (AMST) (aereo STOL da trasporto medio avanzato).
L'AMST mirava ad ottenere un velivolo in grado di sostituire i Lockheed C-130 Hercules in dotazione ai reparti da trasporto USAF. Le specifiche emesse riguardavano la necessità di poter decollare in una distanza massima di 2 000 ft (610 m) da una superficie semi-preparata e di poter operare con un carico di 27 000 lb (12 000 kg) in un raggio d'azione di 400 nm (740 km). Le aziende avrebbero dovuto fornire i progetti per la valutazione iniziale e, dopo la prima fase, due prototipi per le valutazioni comparative.
Al concorso risposero cinque aziende tra cui la Boeing e la McDonnell Douglas, poi contattate per la realizzazione dei velivoli, in quanto giudicati i più meritevoli allo sviluppo, ai quali vennero rispettivamente assegnate le designazioni ufficiali YC-14 e YC-15.
Le prove comparative si svolsero tra il 1975, anno in cui volò per la prima volta l'Y-15, fino al 1979, quando il programma venne cancellato in favore del Programma C-X, che nella decade successiva avrebbe generato il McDonnell Douglas C-17 Globemaster III. Anche se sia l'YC-14 che YC-15 si rivelarono un successo, nessuno dei due aerei venne avviato alla produzione in serie.




Impiego operativo

Il primo Boeing YC-14 (numero 72-1873) volo la prima volta il 9 agosto 1976. Vennero costruiti due aerei, il secondo con numero di coda numero 72-1874. L'avversario, lo YC-15 aveva iniziato a volare quasi un anno prima. i test di volo testa a testa vennero effettuati alla Edwards AFB agli inizi di novembre 1976. Al completamento dei test a fine estate 1977, i prototipi del YC-14 vennero rimandati alla Boeing. I prototipi non vennero demoliti, e uno venne immagazzinato presso lo AMARC, alla base aerea Davis-Monthan e l'altro venne messo in mostra al vicino Prima Air & Space Museum.
A questo punto il programma AMST era già in procinto di essere cancellato. Nel marzo del 1976 il generale dell'Air Force David C. Jones chiese allo Air Force Systems Command se si potesse usare un solo modello per entrambi i modelli di trasporto tattico e strategico, o alternativamente, se si sarebbe potuto sviluppare un derivato non-STOL per il trasporto strategico. Questo portò ad una serie di studi, che in sostanza mostrarono che una tale modifica non sarebbe stata facile, e avrebbe richiesto degli sviluppi sostanziali da inserire nel progetto per poter produrre un aereo più grande. Sia l'YC-14 che l'YC-15 raggiunsero o addirittura superarono le aspettative dell'AMST sotto molti punti di vista. Tuttavia, la crescita dell'importanza di un trasporto strategico rispetto ad uno tattico portarono alla fine del programma AMST nel dicembre 1979 a favore di uno nuovo che portò al C-17 Globemaster III.



L'USB (upper-surface blowing, i motori posti sopra l'ala e col flusso che viene diretto sui flap), utilizzato nella progettazione dell'ala del velivolo, rimase un concetto raro nell'uso, ed è stato usato solo su pochi altri aerei, come sull'Antonov An-72.
  • Utilizzatori: Stati Uniti - United States Air Force.


Il McDonnell Douglas YC-15 è un aereo da trasporto tattico quadrimotore, sviluppato nel corso degli anni settanta, concorrente nell'AMSTc (Advanced Medium STOL Transport competition), indetto dall'USAF per sostituire la propria linea da trasporto tattico composta da C-130 Hercules. Al termine delle valutazioni però, né l'YC-15 né il suo diretto avversario, il Boeing YC-14, vennero dichiarati vincitori. Tuttavia, i progetti dell'YC-15 furono in seguito impiegati per la realizzazione del più noto C-17 Globemaster III.




Storia

Sviluppo

Nel 1968 l'USAF intraprese lo sviluppo di una serie di prototipi che sarebbero stati presentati in occasione dei programmi AMST e Light Weight Fighter. Il bando di gara venne ufficializzato nel gennaio del 1972, ed i requisiti minimi richiesti ai velivoli furono quelli di poter operare da piste semipreparate di lunghezza massima pari a 2 000 m aventi un carico di 12 400 kg ed un raggio d'azione pari a 740 km.
Altri velivoli furono proposti da Bell, Boeing, Fairchild, McDonnell Douglas e Lockheed/North American Rockwell. Il 10 novembre 1972, furono resi noti i nominativi dei velivoli vincitori i quali risultarono essere i prototipi proposti da Boeing e McDonnell Douglas. Alle aziende venne perciò richiesta la realizzazione di ulteriori due esemplari dei rispettivi velivoli. La McDonnell Douglas decise di designare, in questa occasione, il proprio velivolo con la sigla YC-15.




Tecnica

Il progetto della McDonnell Douglas prevedeva la realizzazione d'un velivolo con profilo alare supercritico, risultato di numerosi studi della NASA condotti da Richard Whitcomb. Quest'ala offriva una resistenza aerodinamica del 30% inferiore a quelle con profilo convenzionale, ed allo stesso tempo era in grado di generare un'eccellente portanza alle basse velocità. La maggior parte degli aerei fino ad allora prodotti erano soliti utilizzare ali a freccia per diminuire la resistenza nel fluido, ma ciò portava inevitabilmente ad un volo molto instabile alle basse velocità che li rendeva inadatti per operazioni STOL (Short Take Off and Landing).
La squadra di progettisti, scelse quindi di impiegare un rivoluzionario sistema d'ipersostentatori a soffiaggio esterno con lo scopo di aumentare la portanza. Questo sistema impiegava doppi flap per direzionare parte della spinta dei motori verso il suolo, mentre il resto dei gas di scarico veniva fatto passare attraverso questi seguendo il profilo alare generando un effetto Coandă. Il loro impiego tuttavia non fu realizzabile fino a quando non vennero introdotti i propulsori turboventola il cui flusso di gas di scarico risultava essere meno concentrato e rovente; il problema venne temporaneamente rimandato con l'adozione di ugelli più voluminosi. I propulsori impiegati furono i Pratt & Whitney JT8D, largamente utilizzati sul Boeing 727. L'YC-15 prese in prestito numerose parti dagli altri velivoli prodotti dalla McDonnell Douglas: la prua proveniva dal DC-8 mentre il cockpit dal DC-10.

Impiego operativo

Vennero realizzati due YC-15, uno avente apertura alare di 33,5 metri, l'altro di 40,2 metri. Entrambi erano motorizzati da quattro propulsori turboventola Pratt & Whitney JT8D-17, ognuno capace di 68,9 kN di spinta.
Il primo volo avvenne il 26 agosto 1975. Il secondo prototipo fu portato in volo nel dicembre successivo. Nel 1976, quando furono pronti anche gli esemplari prodotti da Boeing, entrambi i prototipi furono trasferiti presso la Edwards Air Force Base per una serie di test comparati, tra i quali figuravano il trasporto di carichi voluminosi, carri armati e pezzi d'artiglieria, dalla pista semi preparata del Graham Ranch.
L'YC-15 completò l'intero programma, pari a 600 ore di volo, nel 1977. Nel marzo 1976, il capo di stato maggiore dell'aeronautica statunitense il Gen. David C. Jones chiese all'Air Force Systems Command se fosse possibile utilizzare uno solo degli esemplari del progetto AMST per entrambi i ruoli cargo: tattico e strategico. Tutto ciò portò ad una serie di studi che constatarono la difficoltà nel realizzare tali modifiche, che potevano essere più radicali del previsto.
Entrambi i velivoli, sia l'YC-14 che l'YC-15, si rivelarono più efficaci del previsto rispondendo largamente alle richieste del programma AMST. Tuttavia, il bisogno di disporre d'un velivolo da trasporto strategico si fece sempre più strada tanto da portare alla chiusura del programma di sviluppo nel dicembre del 1979. Così nel novembre dello stesso anno, venne istituita la C-X Task Force, con l'obiettivo di riuscire a sviluppare un velivolo dalle caratteristiche differenti. Dal programma C-X venne selezionato un esemplare più capiente dell'YC-15 che fu poi sviluppato nel C-17 Globemaster III.
I prototipi dell'AMST furono destinati all'AMARC, presso la Davis-Monthan Air Force Base. Uno di essi venne successivamente esposto presso il vicino Pima Air & Space Museum. Il primo esemplare realizzato dell'YC-15, (matricola 72-1875) tornò in volo nel 1996 ed ancora nel 1997 per conto della McDonnell Douglas nell'ambito della realizzazione del Globemaster. Un problema tecnico legato al cattivo funzionamento di uno dei propulsori, reputato troppo oneroso, lo relegò per diversi anni presso un magazzino della Boeing presso l'Air Force Plant 42 di Palmdale in California.
Attualmente è in mostra statica presso la Edwards AFB a cui è stato riconsegnato.

ENGLISH

The Boeing YC-14 was a twinjet short take-off and landing (STOL) tactical military transport aircraft. It was Boeing's entrant into the United States Air Force's Advanced Medium STOL Transport (AMST) competition, which aimed to replace the Lockheed C-130 Hercules as the USAF's standard STOL tactical transport. Although both the YC-14 and the competing McDonnell Douglas YC-15 were successful, neither aircraft entered production. The AMST project was ended in 1979 and replaced by the C-X program.

Design and development

In mid-1970, the USAF began a paper study, the Tactical Aircraft Investigation (TAI), with Boeing, McDonnell Douglas, and other companies to look at possible tactical transport aircraft designs. This study was a precursor to what became the Advanced Medium STOL Transport program. As a part of this program, Boeing began to look at various high-lift aircraft configurations. Boeing had earlier proposed an underwing externally blown flap solution for their competitor for the Lockheed C-5 Galaxy, and had put this to good use when they modified their losing entry into the Boeing 747. They had also done studies with the original Boeing 707 prototype, the Boeing 367-80, adding extensive leading and trailing edge devices using blown flaps. For the TAI studies, Boeing again looked at those mechanisms, as well as new mechanisms like boundary layer control. However, none of these studied designs were particularly appealing to Boeing.
The Boeing engineers were aware that NASA had carried out a series of "powered lift" studies some time earlier, including both externally blown flaps, as well an upper-surface blowing (USB), an unusual variation. In the USB system, the engine is arranged over the top surface of the wing, blowing over the flaps. When the flaps are lowered, the Coandă effect makes the jet exhaust "stick" to the flaps and bend down toward the ground. They searched for additional research on the concept, and found that half-span upper-surface blowing research had been conducted in the NASA Langley 12-foot (3.7 m) tunnel. An examination of the preliminary results suggested that the system was as effective as any of the other concepts previously studied. Boeing immediately started to build wind-tunnel models to verify the NASA data with layouts more closely matching their own designs. By the end of 1971, several models were being actively studied.
Another NASA project the engineers were interested in was the supercritical airfoil, designed by Richard Whitcomb. The supercritical design promised to greatly lower transonic drag, as much as a swept wing in some situations. This allowed an aircraft with such a wing to have low drag in cruise while also having a wing planform more suitable to lower-speed flight—swept wings have several undesirable characteristics at low speed. Additionally, the design has a larger leading edge radius that makes it particularly suitable for low-speed high-lift applications like a transport. Boeing incorporated the concept into their design, the first non-experimental aircraft to do so.
The request for proposal (RFP) was issued in January 1972, asking for operations into a 2,000-foot (610 m) semi-prepared field at 500 nautical miles (930 km) with a 27,000 lb (12,000 kg) payload in both directions with no refueling. For comparison, the C-130 of that era required about 4,000 ft (1,200 m) for this load. Five companies submitted designs at this stage of the competition, Boeing with their Model 953 in March 1972. On 10 November 1972 the downselect was carried out, and Boeing and McDonnell Douglas won development contracts for two prototypes each.
Wind tunnel tests continued through this period. In November, John K. Wimpress again visited Langley looking for an update on NASA's own USB program. Joe Johnson and Dudley Hammond both reported on testing and showed Wimpress data that verified the high-lift performance that Boeing had quoted in its proposal. By December 1975, Boeing and NASA Langley had arranged a contract for a full-scale USB testbed, which Boeing built at their Tulalip test facility consisting of a 1/4-scale wing with one JT-15D engine and a partial fuselage. Langley was particularly interested in the effectiveness of the D-shaped nozzle that directed the jet flow over the upper surface of the wing, as well as the resulting sound levels, at that time a major focus of NASA's civilian aerodynamics research.
Two major problems were found and corrected during testing. The first was a problem with air circulating around the wing when operating at low speeds close to the ground, which had a serious effect on the spreading of the jet flow through the nozzle. This led to flow separation near the flap, and a decrease in effectiveness of the USB system. In response, Boeing added a series of vortex generators on the upper surface of the wing, which retracted when the flap was raised above 30°. Additionally, the tail surfaces were initially placed well aft in order to maximize control effectiveness. This positioning turned out to interfere with the airflow over the wings during USB operations, and a new tail with a more vertical profile was introduced to move the elevator forward.

Operational history

The first Boeing YC-14 (serial number 72-1873) flew on 9 August 1976. Two aircraft were built, the second being s/n 72-1874. The competing YC-15 had started flights almost a year earlier. Head-to-head flight testing at Edwards Air Force Base started in early November 1976. During flight testing, the YC-14 was flown at speeds as low as 59 kn (68 mph; 109 km/h) and as high as Mach 0.78 at 38,000 feet (11,600 m). However, it was found that the YC-14's drag was 11% higher than originally predicted. Modifications developed in wind tunnel testing, comprising the addition of vortex generators to the upper aft portion of the nacelles, deletion of the nozzle door actuator fairing, alterations to the aft end of the landing gear pods and the addition of aft fuselage strakes, reduced this drag increment to 7%. The YC-14 also demonstrated the capability to carry the 109,200-pound (49,500 kg) M60 Patton main battle tank, something that was not demonstrated with the YC-15.
At the completion of testing in the late summer of 1977, the YC-14 prototypes were returned to Boeing. The prototypes were not scrapped; one is stored at AMARC, located at Davis-Monthan Air Force Base and the other is on display at the nearby Pima Air & Space Museum.
By this point, the seeds of the AMST program's demise had already been sown. In March 1976, the Air Force Chief of Staff, Gen. David C. Jones, asked the Air Force Systems Command to see if it would be possible to use a single model of the AMST for both strategic and tactical airlift roles, or alternatively, if it would be possible to develop conventional derivatives of the AMST for the strategic airlift role. This led to a series of studies that basically stated that such a modification was not easy, and would require major changes to either design to produce a much larger aircraft.
Both the YC-14 and YC-15 met or exceeded the AMST specifications under most conditions. However, the increasing importance of the strategic vs. tactical mission eventually led to the end of the AMST program in December 1979. Then, in November 1979, the C-X Task Force formed to develop the required strategic aircraft with tactical capability. The C-X program selected a proposal for an enlarged and upgraded YC-15 that was later developed into C-17 Globemaster III.
Upper surface blowing remains a fairly rare concept in use, and has been seen only on a few other aircraft, such as the Antonov An-72.

Aircraft on display

Aircraft serial number 72-1873 is on display at the Pima Air & Space Museum in Tucson, Arizona. The other is in storage at the 309th AMARG boneyard at Davis Monthan Air Force Base (32.17184°N 110.84743°W).

Specifications

General characteristics
  • Crew: 3
  • Capacity: 150 troops or 69,000 lb (31,400 kg) (STOL: 27,000 lb (12,300 kg))
  • Length: 131 ft 8 in (40.14 m)
  • Wingspan: 129 ft 0 in (39.32 m)
  • Height: 48 ft 4 in (14.74 m)
  • Wing area: 1,762 sq ft (163.7 m2)
  • Empty weight: 117,500 lb (53,410 kg)
  • Max takeoff weight: 251,000 lb (113,850 kg) (conventional landing and takeoff), 170,000 lb (77,270 kg) (STOL)
  • Powerplant: 2 × General Electric CF6-50D turbofans, 51,000 lbf (230 kN) thrust each.

Performance
  • Maximum speed: 504 mph (811 km/h, 438 kn)
  • Cruise speed: 449 mph (723 km/h, 390 kn)
  • Ferry range: 3,190 mi (5,136 km, 2,734 nmi)
  • Service ceiling: 45,000 ft (13,716 m)
  • Rate of climb: 6,350 ft/min (32.3 m/s).


The McDonnell Douglas YC-15 was a prototype four-engine short take-off and landing (STOL) tactical transport. It was McDonnell Douglas' entrant into the United States Air Force's Advanced Medium STOL Transport (AMST) competition to replace the Lockheed C-130 Hercules as the USAF's standard STOL tactical transport. In the end, neither the YC-15 nor the Boeing YC-14 was ordered into production, although the YC-15's basic design would be used to form the successful McDonnell Douglas (later Boeing) C-17 Globemaster III.

Design and development

In 1968, the USAF started work on a series of prototype proposals, which would lead to both the AMST project and the Light Weight Fighter. The official Request for proposal (RFP) was issued in January 1972, asking for operations into a 2,000-foot (610 m) semi-prepared field with a 27,000-pound (12,000 kg) payload and a 400-nautical-mile (460 mi; 740 km) mission radius. For comparison, the C-130 of that era required about 4,000 feet (1,200 m) for this load. Proposals were submitted by Bell, Boeing, Fairchild, McDonnell Douglas and the Lockheed/North American Rockwell team at this stage of the competition. On 10 November 1972, the two top bids (from Boeing and McDonnell Douglas) were selected. The companies were awarded development contracts for two prototypes each. McDonnell Douglas' prototype was designated YC-15.
McDonnell Douglas's design incorporated a supercritical wing, the result of NASA research carried out by the already famous Richard Whitcomb. This wing design dramatically lowers transonic wave drag by as much as 30% compared to more conventional profiles, while at the same time offering excellent low-speed lift. Most contemporary aircraft used swept wings to lower wave drag, but this led to poor low-speed handling, which made them unsuitable for STOL operations.
The design team also chose to use externally blown flaps to increase lift. This system uses double-slotted flaps to direct part of the jet exhaust downwards, while the rest of the exhaust passed through the flap and then followed the downward curve due to the Coandă effect. Although the effects had been studied for some time at NASA, along with similar concepts, until the introduction of the turbofan the hot and concentrated exhaust of existing engines made the system difficult to use. By the time of the AMST project, engines had changed dramatically and now provided larger volumes of less-concentrated and much cooler air. For the YC-15, four engines were used, versions of the Pratt & Whitney JT8D-17 widely used on the Boeing 727 and Douglas DC-9. The YC-15 borrowed components from other McDonnell Douglas aircraft, with its nose gear coming from the Douglas DC-8 and the nose section & cockpit being derived from the Douglas DC-10. Parts borrowed from other aircraft included the Universal Aerial Refueling Receptacle Slipway Installation (UARRSI), taken from a Fairchild A-10, anti-tipover stabilizer struts from the Lockheed C-141 Starlifter, pumps taken from the McDonnell Douglas F-15 Eagle, Lockheed C-5 Galaxy, DC-9 and C-141 and actuators taken from the C-5 Galaxy and DC-10. In addition, the environmental cooling system was composed of components taken from the DC-9, C-141 and Boeing KC-135.

Operational history

Two YC-15s were built, one with a wingspan of 110 feet (34 m) (#72-1876) and one of 132 feet (40 m) (#72-1875). Both were 124 feet (38 m) long and powered by four Pratt & Whitney JT8D-17 engines, each with 15,500 pounds-force (69,000 N) of thrust.
The first flight was on 26 August 1975. The second prototype followed in December. They were tested for some time at McDonnell Douglas as the Boeing entry was not ready until almost a year later. In November 1976, both designs were transferred to Edwards Air Force Base for head-to-head testing, including lifting heavy loads like tanks and artillery from dirt airfields at Graham Ranch, off the end of Runway 22.
In Phase II of the flight test program, a "refanned" Pratt & Whitney JT8D-209 was tested in No. 1 nacelle of 72–1876 and a CFM International CFM56 was tested in the No. 1 nacelle of 72–1875. In addition, a new wing with increased chord and span was flown on 72-1875.
The YC-15s completed a 600-hour flight test program in 1977. By this point, the seeds of the AMST program's demise had already been sown. In March 1976, the Air Force Chief of Staff, Gen. David C. Jones, asked the Air Force Systems Command to see if it was possible to use a single model of the AMST for both strategic and tactical airlift roles, or alternatively, if it was possible to develop non-STOL derivatives of the AMST for the strategic airlift role. This led to a series of studies that basically stated that such a modification was not easy, and would require major changes to either design to produce a much larger aircraft.
Both the YC-14 and YC-15 met or exceeded the AMST specifications under most conditions. However, the increasing importance of the strategic vs. tactical mission eventually led to the end of the AMST program in December 1979. Then, in November 1979, the C-X Task Force formed to develop the required strategic aircraft with tactical capability. The C-X program selected a proposal for an enlarged and upgraded YC-15 that was later developed into the C-17 Globemaster III. The Lockheed C-130 Hercules would be further improved into the C-130J and remains in service.
After the flight test program, the two aircraft were stored at the AMARC, located at Davis-Monthan Air Force Base. One aircraft (72-1875) was subsequently moved to the nearby Pima Air & Space Museum in 1981, but was returned to flying status by McDonnell Douglas in 1996; and was first reflown on 11 April 1997. On 16 April 1997, the aircraft was ferried to Long Beach, California to support the C-17 program. On 11 July 1998, the aircraft suffered a massive failure of the No. 1 engine during flight and made an emergency landing at Palmdale, California. On inspection, the aircraft was deemed too expensive to repair and was stored at Palmdale. In 2008, the aircraft was moved by road to Edwards AFB, where it is now on display at the Air Force Flight Test Center Museum's "Century Circle" display area, just outside the base's west gate. The other airframe (72–1876), which had remained on Celebrity Row at the AMARC for many years, was destroyed in place in April 2012.

Specifications

General characteristics
  • Crew: 3
  • Capacity: Up to 150 troops or 78,000 lb (35,000 kg) of cargo
  • Length: 124 ft 3 in (37.9 m)
  • Wingspan: 110 ft 4 in/132 ft 7 in (33.6 m/40.4 m)
  • Height: 43 ft 4 in (13.2 m)
  • Wing area: 1,740 ft² (160 m²)
  • Empty weight: 105,000 lb (47,600 kg)
  • Max. takeoff weight: 216,680 lb (98,285 kg)
  • Powerplant: 4 × Pratt & Whitney JT8D-17 turbofans, 16,000 lbf (72.5 kN) each.

Performance
  • Maximum speed: 590 mph (510 knots, 950 km/h)
  • Cruise speed: 543 mph (471 knots, 872 km/h)
  • Range: 2,995 mi (2,600 nm, 4,800 km) with a 38,000-pound (17,000 kg) payload
  • Service ceiling: 30,000 feet (9,100 m).

(Web, Google, Wikipedia, You Tube)












































La Marina finlandese ha adottato il missile antinave israeliano Gabriel V


La Marina Finlandese ha sollevato il velo sul suo futuro missile antinave Gabriel V che sarà fornito da Israel Aerospace Industries (IAI) nell'ambito di un programma di approvvigionamento approvato dal Ministero della Difesa finlandese nel luglio 2018.

Designato come PTO202020 dalla Marina Finlandese (ma indicato anche come SSM2020), il nuovo sistema in fase di approvvigionamento sostituirà l'attuale sistema missilistico anti-nave MTO85M che è la designazione locale del sistema d'arma Saab RBS-15 SF che raggiungerà la fine del suo ciclo di vita nel 2020. Il nuovo missile sarà installato a bordo dei mezzi di attacco rapido della classe Hamina del programma 2000 dello Squadrone in servizio (nell'ambito del loro aggiornamento a metà del loro ciclo di vita) e delle nuove corvette multiruolo della classe Pohjanmaa (nell'ambito del programma dello Squadrone 2020) insieme a un'applicazione per la piattaforma di veicoli, che implica una configurazione di batterie mobili costiere.
Secondo le informazioni e i rendering rilasciati dalla Marina Militare finlandese il 13 dicembre, la cellula del missile assomiglia alla configurazione dell'arpione Boeing Harpoon con una presa d'aria fissa sotto la pancia posteriore con la cellula centrale e pinne posteriori ripiegabili, insieme a pinne posteriori fisse più piccole. Con una lunghezza di 5,5 metri e un peso di 1.250 kg, secondo le informazioni pubblicate, il Gabriel V è dotato di un motore a turboreattore che consente una velocità subsonica e serbatoi di carburante che forniscono un'autonomia superiore ai 200 km. Il Gabriel V è mostrato con un booster posteriore per il lancio da navi e veicoli.
Il nuovo missile antinave della Marina Finlandese è dotato di un ricercatore radar attivo con funzioni avanzate anti inceppamento, capacità per tutte le condizioni atmosferiche, ampio raggio di ricerca e buona risoluzione di discriminazione. Il sistema d'arma è dotato di un GPS/INS, di un sistema di navigazione integrato con waypoint multipli e di una testata penetrante. Secondo la Marina finlandese, il Gabriel V può essere usato contro bersagli in acqua e a terra.
Il nuovo programma di approvvigionamento anti-nave, che comprende un numero non divulgato di missili, lanciatori e opzioni per ulteriori consegne di armi, simulatori, attrezzature di prova, pezzi di ricambio e addestramento, ha un valore di 162 milioni di euro, con ulteriori 193 milioni di euro per missili opzionali e accessori. Secondo le informazioni disponibili, le consegne dovrebbero avvenire tra il 2019 e il 2025. Ciò significa che Gabriel V è già stato qualificato ed è in produzione.
La decisione di acquistare il sistema missilistico israeliano Gabriel è stata presa a seguito di una gara d'appalto tra Kongsberg NSM, MBDA Exocet, Boeing Harpoon, Saab RBS15 e Israel Aerospace Industries Gabriel. Secondo il comunicato stampa del programma di approvvigionamento della Marina Finlandese, i principali criteri di selezione includevano le prestazioni rispetto ai costi e al calendario di acquisizione, i costi del ciclo di vita, la sicurezza della fornitura e la compatibilità con le infrastrutture e il sistema di difesa esistenti.

Il Gabriel V avrebbe la stessa lunghezza di Exocet o AGM-84 Harpoon. È dotato di un autodirettore radar attivo, contromisure elettroniche, contromisure elettroniche e porta esche.

La Finlandia ha scelto di recente l'Advanced Naval Attack Missile di Israele per sostituire il suo attuale sistema MTO85M, un derivato del missile anti-nave svedese RBS15 che raggiungerà la fine del suo ciclo di vita nel 2020. 
Il missile Gabriel della IAI ha battuto altri quattro concorrenti valutati dal Ministero della Difesa finlandese: l’ NSM di Kongsberg, l’Exocet di MBDA, l’Harpoon di Boeing e l’RBS15 della Saab. Il contratto iniziale ha un valore di 162 milioni di EUR, con un'opzione di 193 milioni di EUR.
La selezione del missile d'attacco navale avanzato di Israele segna un risultato importante per la società IAI, che rappresenta la prima vendita di tale sistema strategico a una marina militare europea. 
Conosciuta anche come Gabriel 5, l'arma è l'ultimo membro di una famiglia di missili d'attacco navale sviluppata dalla IAI. Poco si sa dell’arma: si ritiene sia operativa sulle navi missilistiche della Marina israeliana e con alcune marine straniere.
Con dimensioni approssimative come l'Harpoon USA e l'EXOCET francese, il missile israeliano copre distanze maggiori e può completare la sua missione anche in un ambiente altamente restrittivo. Utilizzando un moderno e avanzato ricercatore radar attivo ed un sofisticato controllo progettato per superare i problemi di selettività degli obiettivi, il sistema raggiunge un'efficacia operativa molto elevata, in particolare nelle acque litoranee. Come tale è ottimizzato per il funzionamento in acque congestionate, in condizioni di pesante guerra elettronica e contro contromisure sofisticate, tipiche degli scenari che si possono incontrare nel Mar Baltico e in mari ristretti. Il missile ha una portata stimata di 200-400 km e, secondo alcuni rapporti, una versione del missile è dotata di un collegamento dati bidirezionale. Secondo il Ministero della Difesa finlandese, il missile sarà utilizzabile anche da piattaforme veicolari a terra e contro obiettivi terrestri.
Come un missile d'attacco avanzato, il Gabriel 5 potrebbe penetrare le protezioni dell'obiettivo, sia per le difese soft e hard-kill. E' stato progettato con sofisticate contromisure elettroniche (ECCM), esche avanzate ed ECM attive. Il missile Gabriel 5 ed il Barak 8 sono stati descritti come parte di un sistema combinato, offensivo e difensivo costruito dalla divisione Missili e Spazio della IAI per la marina israeliana e per l'esportazione.
I principali criteri di selezione hanno ponderato le prestazioni dell'arma, i costi di acquisizione, i tempi di consegna, i costi del ciclo di vita e la sicurezza dell'approvvigionamento. È stata presa in considerazione anche la compatibilità con le infrastrutture e il sistema di difesa esistenti.
Il nuovo missile sarà installato sulle navi missilistiche esistenti della classe Hamina e sulle nuove navi “Squadron 2020”, la prima delle quali sarà varata nel 2019. 
L'Hamina è oggetto di un programma di aggiornamento di mezza vita condotto dalla società Patria. L'SMM2020 sarà installato anche su una piattaforma veicolare, introducendo una prima variante di difesa costiera conosciuta per il Gabriel. Le consegne inizieranno nel 2019 e continueranno fino al 2025. La Marina finlandese dovrebbe mantenere in servizio il nuovo missile per un periodo di 30 anni. L'acquisto comprenderà lanciatori, missili, simulatori, apparecchiature di prova, pezzi di ricambio e addestramento.

ENGLISH

Finnish Navy unveils first details of its future Gabriel V anti-ship missile

The Finnish Navy has lifted veil on its future Gabriel V anti-ship missile to be provided by Israel Aerospace Industries (IAI) under a procurement programme approved by the Finnish Defense Ministry on July 2018.
Designated as PTO2020 by Finnish Navy (but also indicated as SSM2020), the new system under procurement will replace the current anti-ship missile system MTO85M that is the local designation of the Saab RBS-15 SF weapon system that will reach the end of its lifecycle in the 2020s. The new missile will be installed on board the in-service Squadron 2000 programme’s Hamina-class fast attack craft (as part of their mid-life upgrade) and the new Pohjanmaa-class multi-role corvettes (under the Squadron 2020 programme) together with a vehicle platform application, which implies a mobile coastal battery configuration.
According to information and renderings released by the Finnish Navy on 13 December, the missile airframe resembles the Boeing Harpoon configuration with a rear underbelly fixed air intake with middle-airframe and rear foldable fins, together with smaller fixed rear fins. With a 5.5 meters length and a 1,250 kg weight, according to released information, the Gabriel V features a turbojet engine allowing subsonic speed and fuel tanks providing a range in excess of 200 km. The Gabriel V is shown with a rear booster for launch from ships and vehicles.
The new Finnish Navy’s anti-ship missile is fitted with an active radar seeker with advanced anti-jam features, all-weather capabilities, wide search range and good discrimination resolution. The weapon system is equipped with a GPS/INS, multiple waypoints integrated navigation system and a penetrating warhead. According to the Finnish Navy, the Gabriel V can be used against over water and on-land targets.
The new anti-ship procurement programme, which includes an undisclosed number of missiles, launchers and options for additional weapon deliveries, simulators, test equipment, spare parts and training, has a value of € 162 million, with an additional € 193 million for optional missiles and ancillaries. According to available information deliveries should take place between 2019 and 2025. This would mean that Gabriel V has already been qualified and is under production.
The decision to purchase the Israeli Gabriel Missile System has been made as a result of competitive bidding between Kongsberg NSM, MBDA Exocet, Boeing Harpoon, Saab RBS15 and Israel Aerospace Industries Gabriel missiles. According to the Finnish Navy procurement programme press statement, the main selection criteria included performance versus acquisition costs and schedule, life cycle costs, security of supply, and compatibility with existing infrastructure and defence system.

Gabriel V (Advanced Naval Attack Missile)

Israel Aerospace Industries is reportedly working on a Gabriel V Advanced Naval Attack Missile, with an advanced active multi-spectra seeker designed for cluttered littoral environments.

Operational history

During the Yom Kippur War the Gabriel I was used for the first time during the Battle of Latakia. Israeli missile boats armed with Gabriel Mk 1 missiles were credited with defeating Syrian ships armed with the Soviet-made Styx missile. Even though the Styx missile had a longer range, the Gabriel's reliability and flexibility of handling contributed to the Israeli victory. It is known that the Syrians shot missile salvos at the charging Israeli vessels, but missed due to the Israeli ECM technology of the time. When they were in range, the Israeli boats launched their Gabriel missiles, and sank all but one Syrian Osa class ship, which was later sunk by cannon fire. After defeating the Syrian Navy (surviving Syrian ships stayed in port) the Israeli missile boats defeated the Egyptian navy as well, achieving naval supremacy for the remainder of the war.
Older models of the Gabriel are still used by Chile, Ecuador, Israel, Mexico, Sri Lanka, Kenya, and other countries. During the Yom Kippur War in 1973, however, the P-15 Russian missile was much less successful. From October 6 to October 12, 54 missiles were fired to no effect, according to Western sources. The aforementioned Russian sources however, claim that a total of seven ships were sunk - all small vessels such as trawlers, patrol boats, and missile boats. But the Russian specialists agreed with their Western counterparts that the overall results were unsatisfying, especially considering that seven Egyptian and Syrian vessels were sunk after being hit by Israeli Gabriel Mk.1 anti-ship missiles. This last figure is commonly recognized by specialists in both the West and East.
The first such encounter took place during the night of October 6 to October 7, 1973, near Latakia on the Syrian coast. Israeli forces used helicopters flying slowly at very low altitude, effectively simulating naval targets. No Israeli ship was hit by the large salvo of P-15s subsequently fired by the Syrians, who themselves lost the T-43 class trawler Jarmuk and three torpedo boats to Israeli Gabriel missiles. The Syrian missile boats withdrew successfully, but all of their missiles missed the Israeli helicopters, which had climbed to break the missile radars' locks. On the same night, a similar trick with helicopters was repeated against Egyptian ships north of the Sinai Peninsula. Yet another encounter took place near Latakia on the night of October 10–11. This time, the missile exchange between Israeli and Syrian missile boats took place without the use of helicopters, and Israeli ships relied on chaff launchers. The Syrian vessels maneuvered outside their harbor among the anchored merchant ships. Two of the warships were sunk by Gabriel missiles, which also hit two neutral ships, the Greek Tsimentaros and the Japanese Yamashuro Maru. According to Israeli sources, the use of chaff saved all of its vessels. The following night, the helicopter maneuver was again successfully used during an encounter near Tartus off the Syrian coast. No Israeli ship was hit by a salvo of P-15s fired by Syrian missile boats. On the Syrian side, two Komar-class vessels were sunk by Gabriel missiles, and also the Soviet merchant ship Ilya Mechnikov was hit. On the same night, a similar encounter took place off the coast of Port Said.

Finland has selected Israel’s Advanced Naval Attack Missile to replace its current MTO85M system, a derivative of Swedish RBS15 that will reach the end of its life cycle in the 2020s. IAI’s Gabriel has beaten four other competitors evaluated by Finland’s MOD, including Kongsberg’s NSM, MBDA’s Exocet, Boeing’s Harpoon and Saab’s RBS15. The initial contract is worth EUR162 million, with an option worth EUR 193 million.
The selection of Israel’s Advanced Naval Attack Missile marks an important achievement for IAI, representing the first sale of such strategic system to a European Navy. Also known as Gabriel 5, the weapon is the latest member of a family of naval attack missiles developed by IAI. Little is known about the weapon, that is believed to be operational on Israel Navy missile boats and with some foreign navies.
With a size roughly as the American Harpoon and French Exocet, the Israeli missile covers longer ranges and can complete its mission even in a highly restrictive environment. Using a modern and advanced active radar seeker and a sophisticated weapon control designed to overcome target selectivity problems, the system achieves very high operational effectiveness, particularly in littoral waters. As such it is optimized for operation in congested waters, and under heavy electronic warfare and against sophisticated countermeasures, typical of scenarios that might be encountered in the Baltic Sea. The missile has an estimated range of 200-400 km and, according to some reports, a version of the missile is equipped with a two-way datalink. According to the Finnish MOD, the missile will also be usable from vehicular platforms on land and against land targets.
As an advanced attack missile, Gabriel 5 could penetrate the target’s protection, both soft- and hard-kill defenses. It was designed with sophisticated electronic counter-countermeasures (ECCM) dealing with chaff, advanced decoys, and active ECM. Gabriel 5 and Barak 8 were described as part of a combined, offensive and defensive system suite built by IAI’s Missiles and Space division for the Israeli navy and for export.
The main selection criteria weighed the weapon’s performance along with acquisition costs and schedule, lifecycle costs and security of supply. Compatibility with existing infrastructure and defense system was also considered.
The new missile will be installed on existing Hamina-class missile boats and the new Squadron 2020 vessels, the first will be launched in 2019. The Hamina is undergoing a midlife upgrade program lead by Patria. The SMM2020 will also be installed on a vehicle platform, introducing a first known coastal defense variant for the Gabriel. Deliveries will start in 2019 and continue through 2025. The Finnish Navy is expected to maintain the new missile in service for a period of 30 years. The purchase will include launchers, missiles, simulators, test equipment, spare parts, and training. The SSM2020 will be maintained in Finland.

(Web, Google, EDR, Wikipedia, You Tube)







Il progetto della Marina Militare finlandese “Squadroon 2020” e le nuove corvette classe "Pohjanmaa"


La Finlandia sta preparando un massiccio approvvigionamento della difesa, che comprende piattaforme dell'esercito, della marina e dell'aeronautica e sistemi ausiliari di supporto al combattimento.
Questo programma di acquisti ha un valore di diversi miliardi di euro. E questo è un cambiamento importante per una nazione in quanto, dal 1988 veniva assegnata alla difesa una media di appena 1,54 % del PIL.
La Russa sta riscaldando tutte le acque e i confini del mondo e c'è ancora una calda situazione ucraina sul tavolo. I finlandesi si sentono più minacciati ora di quanto non lo fossero prima.
Nell'ambito di questo programma di approvvigionamento, le Forze di Difesa hanno lanciato un progetto di acquisto di unità missilistiche di superficie, armate di missili sup-sup israeliani Gabriel V, per aggiornare le capacità della Marina Militare finlandese a far data dal 2020. 
Il progetto è stato chiamato “Squadroon 2020”, noto anche come “Laivue 2020”.



La classe Pohjanmaa è una serie di quattro corvette multi-ruolo attualmente in fase di sviluppo per la Marina finlandese nell'ambito del progetto Squadron 2020 (Finlandese: Laivue 2020). Insieme alle quattro navi missilistiche di classe Hamina esistenti, le  quattro nuov unità di superficie costituiranno la spina dorsale della Marina finlandese a partire dalla metà del 2020. Sostituiranno sette navi più vecchie che sono state o devono essere ritirate.

Panoramica della classe:
  • Nome: Pohjanmaa - classe corvette
  • costruttori: Rauma Marine Constructions
  • operatore: Marina finlandese
  • Preceduto da: Classe Rauma - Classe di Hämeenmaa - Pohjanmaa
  • Costo:1,3 miliardi di euro (stima)
  • In commissione:Dal 2022 in poi (previsto)
  • In ordine:4
  • Caratteristiche generali
  • Genere: Corvetta
  • Dislocamento: Circa 3.900 tonnellate 
  • Lunghezza: 114 m (374 piedi)
  • Larghezza: 16 m (52 piedi)
  • Pescaggio: 5 m (16 piedi)
  • Propulsione: Combinato diesel-elettrico e gas (CODELAG)
  • Velocità: Oltre 26 nodi (48 km / h; 30 mph)
  • Autonomia operativa: ~ 6.500 km
  • Equipaggio: ~ 70 - 120

Sensori e sistemi di elaborazione:
  • 1 × Saab Electronic Defense Systems 9LV CMS 
  • Saab Sea Giraffe 4AFF radar a faccia fissa 
  • 1 × radar Saab Sea Giraffe 1X 
  • 2 × Saab Ceros 200 radar e direttori di controllo antincendio con tracciamento optronico 
  • 1 × sonar Patria Sonac DTS a doppio rimorchio 

Guerra elettronica ed esche:
  • ESM
  • COM-ESM
  • ECM
  • 4 × sistemi di richiamo MASS

Armamento:
  • 1 × Bofors 57 mm / 70 SAK Mk3
  • 32 × Missili terra-aria evoluti Sea Sparrow 
  • 8 × Missili terra-superficie Gabriel 
  • Miniere navali
  • Saab Torpedo 47
  • 2 × Saab Trackfire RWS 
  • 2 mitragliatrici NSV
  • Strutture aeronautiche: Helideck per un elicottero o UAV.

PROGETTO E CARATTERISTICHE

La lunghezza complessiva delle corvette classe Pohjanmaa è di 114 m (374 piedi) e il raggio si estende su 16 m (52 piedi). Le navi dislocano circa 3.900 tonnellate. Ogni nave ha un equipaggio di 70-120 uomini e donne.
La classe incorpora alcune caratteristiche principali tra cui lo scafo rinforzato con ghiaccio. Il ponte di volo, con il suo hangar, può ospitare elicotteri o UAV.



SISTEMA DI COMBATTIMENTO E ARMAMENTO

Le corvette saranno armate con pistole Bofors da 57 mm, missili terra -aria ESSM, missili terra -superficie Gabriel V, 47 siluri antisommergibile Torped e mine marine.
Il sistema missilistico terra-aria è stato selezionato in una competizione tra Sea Ceptor di MBDA, Indo-Israeli Barak 8 e US Evolved Seasparrow Missile (ESSM), con quest'ultimo selezionato. Il missile è costruito da Raytheon Missile Systems e BAE Systems ad Aberdeen, nel Dakota del Sud, costruisce i contenitori di missili quad Mk 41 a 8 celle, di cui le navi saranno dotate di 7,7 m (25 piedi) di lunghezza variante di lunghezza di colpo. Ogni nave sarà quindi in grado di trasportare 32 missili ESSM.
I missili anti-nave sono stati selezionati in una competizione tra il missile israeliano IAI Gabriel 5, l' Exocet MM40 di MBDA, lo svedese RBS-15 Mk.IV , il norvegese Naval Strike Missile (NSM) e l'US RGM-84Q- 4 missili lanciati in superficie Harpoon Block II + ER grado B e missili lanciati in superficie RGM-84L-4 Harpoon Block II grado B. Il Gabriel 5 è stato selezionato nel 2018.
I siluri antisommergibili saranno il modello svedese Torped 47, un siluro leggero, ottimizzato per le condizioni del Mar Baltico. La marina finlandese prenderà in prestito e si addestrerà con il precedente siluro Torped 45 fino alla consegna finale del modello 47. La suite di sensori ASW è composta da un sistema Patria Sonac DTS a doppio rimorchio che consiste sia di un sonar attivo a profondità variabile che di un un array ricevente a linea sottile rimorchiato passivo che può essere usato insieme o indipendentemente. Il sistema è stato progettato specificamente per le condizioni del Mar Baltico.
Il sistema di gestione del combattimento 9LV CMS di Saab Electronic Defense Systems è stato selezionato nell'aprile 2019, è stato selezionato su Atlas Elektronik (ANCS) o Lockheed Martin (CMS 330). Le navi devono essere equipaggiate con l'albero leggero integrato (SLIM) di Saab.
Le navi saranno anche in grado di posare miniere marine, ad esempio il PM85 britannico o il PM04 o PM16 finlandese.

SVILUPPO E COSTRUZIONE

Lo sviluppo della classe Pohjanmaa è iniziato con una fase di ricerca e pianificazione nel 2008. La fase di progettazione è iniziata nel 2015 e la costruzione è iniziata nel 2019. Si prevede che l'ultima delle quattro navi raggiungerà il pieno stato operativo entro il 2028.
Le navi saranno costruite nel cantiere navale Rauma Marine Constructions a Rauma, in Finlandia. L'obiettivo del progetto era migliorare la localizzazione e lo sviluppo dell'industria delle costruzioni di navi da guerra in Finlandia. La classe Pohjanmaa sarà la nave navale più lunga della Marina finlandese, superando Ilmarinen e Väinämöinen, lunghi 93 metri (93 piedi), sebbene questi ultimi fossero più ampi.
Le navi assumeranno numerosi ruoli, il ruolo di addestramento di Hämeenmaa, il ruolo di posologia di Pohjanmaa e degli Hämeenmaa, il ruolo di combattente di superficie dei Rauma, oltre ad aggiungere estese capacità antiaeree, antisommergibile aggiuntive e di sorveglianza. Le nuove navi entreranno in funzione nel 2022-2028.
Il 18 marzo 2019 il Ministero della Difesa ha diffuso un comunicato stampa in merito al rinvio della decisione sugli appalti a causa delle dimissioni del Consiglio dei Ministri l'8 marzo solo un mese e sei giorni prima delle elezioni parlamentari.

NOME

Una delle tradizioni della marina finlandese è stata quella di nominare le sue principali navi dopo le regioni della Finlandia. Il nome Pohjanmaa, che è il nome finlandese per la regione Ostrobothnia, è stato utilizzato sia dalle marine finlandesi che svedesi per le precedenti navi e classi di navi, risalente al 18° secolo con la prima nave registrata essendo Gamla Pojama ("Old Pohjanmaa "), che fu varato nel 1760, e l'ultimo, essendo la nave posatubi / nave da addestramento Pohjanmaa, che fu venduta nel 2016. Le summenzionate Pohjanmaa del XVIII secolo, insieme alle classi Hämeenmaa, Uusimaa e Turunmaa furono anche le quattro principali" fregate dell'arcipelago "classi utilizzate nella battaglia di Svensksund del 1790, che è una delle più grandi vittorie navali finlandesi (all'epoca la Finlandia faceva parte della Svezia) e la più grande battaglia navale nel Mar Baltico fino ad oggi.

CORVETTE O FREGATE?

Mentre la Marina finlandese e il Ministero della Difesa si riferiscono alle nuove unità di superficie come corvette multi-ruolo, diversi commentatori hanno sottolineato che con il dislocamento di 3.900 tonnellate le navi dovrebbero essere classificate come fregate. Alla fine di settembre 2019, poco dopo l'aggiudicazione del contratto di costruzione, il deputato Johannes Yrttiaho ( Alleanza di sinistra ) ha presentato un'interrogazione scritta al Parlamento finlandese in merito, tra l'altro, alla classificazione delle nuove navi.
Nel blog ufficiale delle forze di difesa finlandesi, l'ammiraglio della Flottiglia Jori Harju (comandante della marina finlandese) ha osservato che uno dei motivi che portano all'aumento del dislocamento è il rafforzamento aggiuntivo dello scafo, delle linee dell'albero di propulsione e delle eliche necessarie per funzionamento tutto l'anno nelle acque territoriali finlandesi congelate stagionalmente. Ha anche sottolineato che la classe Pohjanmaa è destinata a operare principalmente nelle acque costiere, mentre le fregate sono tradizionalmente considerate la più piccola classe di navi da guerra che operano in alto mare come parte di una cosiddetta marina blu. 
Dall'inizio degli anni 2000, la flotta da combattimento di superficie della Marina finlandese è stata costituita principalmente da mezzi di attacco rapido da 250 a 300 tonnellate. Fino alla prevista commissione della nuova classe Pohjanmaa, le navi di superficie della Marina finlandese rimangono i posamine classe Hameenmaa. Numerosi commentatori hanno criticato il programma Squadron 2020 a causa delle dimensioni delle nuove corvette: secondo i critici, le navi sono troppo grandi per le acque territoriali finlandesi spesso poco profonde piene di skerries e obiettivi troppo attraenti e grandi per i missili russi anti-nave. Inoltre, è stato ipotizzato che le dimensioni della nave siano state determinate dalla loro idoneità per le missioni internazionali piuttosto che per le esigenze di difesa interna.
La Marina finlandese ha sostenuto che le dimensioni delle nuove navi sono il risultato della combinazione di più missioni all'interno di un singolo scafo. In particolare, la capacità di posare mine navali è stata aumentata come una delle caratteristiche chiave che richiedono una nave più grande.

ENGLISH

Finland is gearing up for the massive defence procurement which is including army, navy and air force platforms and supportive auxillary combat systems.
It is said that this procurement programme is worth several billion euros. And this is a major-step change for a nation after it has been allocated an average of just %1.54 of GDP to defence since 1988.
So Russia is heating up all the waters and the borders in the world and there is still a warm Ukrainian situation on the table as an example. The Finns are considering that the defence landscape in their region has changed and they feel more threatened now than they did before.
As a part of this procurement programme The Defence Forces has launched a project to buy surface combatants to replace the Navy’s capabilities which will become outdated in the 2020s. The Project was named Squadron 2020 also known as Laivue 2020.

The Pohjanmaa class is a series of four multi-role corvettes currently under development for the Finnish Navy as part of the Squadron 2020 (Finnish: Laivue 2020) project. Together with the existing four Hamina-class missile boats, the four new surface combatants will form the backbone of the Finnish Navy from the mid-2020s onwards. They will replace seven older vessels that have been or are due to be decommissioned: the minelayer Pohjanmaa, two Hämeenmaa-class minelayers and four Rauma-class missile boats.

Design

General characteristics

The overall length of the Pohjanmaa-class corvettes is 114 m (374 ft), and the beam spans 16 m (52 ft). The ships displace about 3,900 tonnes (3,800 long tons; 4,300 short tons). Each ship compliments a crew of 70–120.
The class incorporates some major features including ice-strengthened hull. The flight deck, with its hangar can house either helicopters or UAVs.
Combat system and armament
The corvettes are going to be armed with Bofors 57 mm guns, ESSM surface-to-air missiles, Gabriel surface-to-surface missiles, Torped 47 anti-submarine torpedoes, as well as sea mines.
The surface-to-air missile system was selected in a competition between MBDA's Sea Ceptor, the Indo-Israeli Barak 8, and the U.S. Evolved Seasparrow Missile (ESSM), with the latter being selected. The missile is built by Raytheon Missile Systems and BAE Systems in Aberdeen, South Dakota, builds the 8-cell Mk 41 quad missile canisters, of which the vessels are going to be equipped with the 7.7 m (25 ft)-long strike-length variant. Each ship will therefore be able to carry 32 ESSM missiles.
The anti-ship missiles were also selected in a competition between the Israeli IAI's Gabriel 5 missile, MBDA's Exocet MM40, the Swedish RBS-15 Mk.IV, the Norwegian Naval Strike Missile (NSM) and the U.S. RGM-84Q-4 Harpoon Block II+ ER Grade B Surface-Launched Missiles and RGM-84L-4 Harpoon Block II Grade B Surface-Launched Missiles. The Gabriel 5 was selected in 2018.
The anti-submarine torpedoes are going to be the Swedish Torped 47 design, a light-weight torpedo, optimized for Baltic Sea conditions. The Finnish navy is going to loan and train with the earlier Swedish design Torped 45 until the final delivery of the model 47. The ASW sensor suite is consisting of a dual-tow Patria Sonac DTS system that consists of both an active variable depth sonar and a passive towed thin-line receiving array that can be used together or independently. The system has been designed specifically for Baltic Sea conditions.
The combat management system 9LV CMS by Saab Electronic Defence Systems was shortlisted in April 2019, it was selected over Atlas Elektronik (ANCS) or Lockheed Martin (CMS 330). The vessels are to be equipped with Saab's Integrated Lightweight Mast (SLIM).
The vessels will also be able to lay sea mines, e.g. the British PM85, or the Finnish PM04 or PM16.

Development and construction

The development of the Pohjanmaa class started with a research and planning phase in 2008. The design phase began in 2015 and construction is scheduled to begin in 2019. The last of the four vessels is expected to achieve full operational status by 2028.
The vessels are to be constructed at the Rauma Marine Constructions shipyard in Rauma, Finland. The project's objective was to enhance localization and development of warship construction industry in Finland. The Pohjanmaa class are going to be the longest naval vessels of the Finnish Navy, surpassing the 93-metre (305 ft) long Ilmarinen and Väinämöinen, though the latters were wider.
The vessels will take on numerous roles, the training role from Hämeenmaa, the minelaying role from Pohjanmaa and the Hämeenmaas, the surface combatant role from the Raumas, as well as add extended anti-aircraft, additional anti-submarine and surveillance capabilities. The new vessels will become operational in 2022–2028.
On March 18 2019 the Ministry of Defence put out a press release about the procurement decision being postponed due to the resignation of the Cabinet on March 8 only a month and six days before Parliamentary election.

Naming

One of the Finnish navy's traditions has been to name its major vessels after regions in Finland. The name Pohjanmaa, which is the Finnish name for the region Ostrobothnia, has been used both by the Finnish and Swedish navies for previous ships and classes of ships, dating back to the 18th century with the first recorded vessel being Gamla Pojama ("Old Pohjanmaa"), that was launched in 1760, and the last one, being the minelayer/training vessel Pohjanmaa, which was sold in 2016. The aforementioned 18th century Pohjanmaa, alongside the Hämeenmaa, Uusimaa and Turunmaa classes were also the four main "archipelago frigate" classes used in the 1790 Battle of Svensksund, which is one of the largest Finnish (Finland was a part of Sweden at the time) naval victories and the largest naval battle in the Baltic Sea to date.

Criticism

Corvette or frigate?

While the Finnish Navy and the Ministry of Defence refer to the new surface combatants as multi-role corvettes, several commentators have pointed out that by displacement the 3,900-tonne (3,800-long-ton) vessels should be classified as frigates. In late September 2019, shortly after the construction contract was awarded, MP Johannes Yrttiaho (Left Alliance) submitted a written question to the Parliament of Finland about, among other related topics, the classification of the new vessels.
In the official blog of the Finnish Defence Forces, Flotilla admiral Jori Harju [fi] (Commander of the Finnish Navy) noted that one of the reasons leading to the increased displacement is the additional strengthening of the hull, propulsion shaft lines and propellers required for year-round operation in the seasonally freezing Finnish territorial waters. He also pointed out that the Pohjanmaa class is intended to operate primarily in coastal waters whereas frigates are traditionally considered as the smallest class of warships operating in the high seas as part of a so-called blue-water navy.

Too large for Finland?

Since the early 2000s, Finnish Navy's surface combatant fleet has consisted mainly of fast attack craft with displacements of 250 to 300 tonnes (250 to 300 long tons). Until the planned commission of the new Pohjanmaa-class, the largest surface combatants of the Finnish Navy remain the two Hämeenmaa-class minelayers. Several commentators have criticized the Squadron 2020 program due to the size of the new corvettes: according to critics, the vessels are too large for the often shallow Finnish territorial waters riddled with skerries as well as too attractive and large targets for Russian anti-ship missiles. Furthermore, it has been speculated that the vessel size has been driven by their suitability for international missions rather than domestic defence needs.
The Finnish Navy has argued that the size of the new ships is a result of combining multiple missions within a single hull. In particular, the ability to lay naval mines has been raised as one of the key features necessitating a larger vessel.

(Web, Google, Wikipedia, You Tube)