venerdì 8 luglio 2022

Le ultime due fregate FREMM-IT destinate a sostituire in seno alla flotta della Marina Militare la BIANCHI e la SCHERGAT vendute all’Egitto avranno una configurazione ibrida.


SI VIS PACEM, PARA BELLUM - “SVPPBELLUM.BLOGSPOT.COM"

….La guerra all’Ucraina ci deve insegnare che, se vuoi vivere in pace, 
devi essere sempre pronto a difendere la tua Libertà….

Basta con la retorica sulle guerre umanitarie e sulle operazioni di pace. 
La guerra è guerra. Cerchiamo sempre di non farla, ma prepariamoci a vincerla.

Le ultime due fregate FREMM-IT destinate a sostituire in seno alla flotta della Marina Militare la BIANCHI e la SCHERGAT vendute all’Egitto avranno una configurazione ibrida. 
Le 2 unità, infatti, avranno le medesime capacità ASW delle 4 FREMM ASW oggi in linea, quindi saranno dotate della:
  • suite ASW completa di Thales-TUS che prevede sonar a scafo (BMS), 
  • Panoramic Eco Sounder (PES), 
  • sonar attivo-passivo (TA/TB) con cortina trainata a poppa (sistema integrato CAPTAS 4). 
Tuttavia, queste 2 navi manterranno la capacità artiglieresca delle GP (General Purpose): 
  • il 127/64 VULCANO a prora al posto del 76/62 STRALES/DAVIDE delle "normali" ASW. 
  • rispetto alle GP, non avranno però il secondo RHIB d'assalto con sistema di lancio e recupero comprendente scivolo/rampa a poppa in quanto tale area sarà ovviamente occupata dalle apparecchiature del CAPTAS 4.






Le fregate sono realizzate in tre versioni: lotta antisommergibile (ASW - Anti Submarine Warfare), multiruolo (General Purpose) per l'attacco al suolo in profondità e il bombardamento controcosta in appoggio alle forze da sbarco, ed infine antiaerea (FREDA) solo per la Marine nationale. Tutte le versioni dispongono di un sistema di autodifesa antiaerea (AAW - Anti Air Warfare) basato sul missile Aster 15; tutte le unità italiane e le FREDA francesi avranno anche missili superficie/aria MBDA Aster 30 per la difesa antiaerea d'area. Tutte avranno un sistema di difesa antinave (ASuW - Anti Surface Warfare), basato sul missile Teseo/OTOMAT per le navi italiane e sul missile Exocet per quelle francesi.
Tutte le unità sono dotate di eliche di manovra prodiere della potenza di 1 MW, che velocizza di molto le accostate e ne agevola le manovre in spazi ristretti, ed utilizzabile anche come propulsore ausiliario in grado di generare 7 nodi di velocità massima; le navi sono inoltre progettate in classe RINA con specifiche militari (RINAMIL for FREMM ed. 2006) e rispettano le norme antinquinamento marino MARPOL. I due timoni, fuori asse rispetto alle eliche, non sono verticali ma inclinati di 9° in modo da fungere anche da alette stabilizzatrici.
Le navi erano originariamente programmate per ospitare fino a 165 membri dell'equipaggio, ma l'eliminazione di uno spazio a prora destinato ad ospitare missili a lunga gittata ha permesso di ampliare i posti fino a 200, dei quali 23 destinati alla gestione degli elicotteri, 131 (GP) o 133 (ASW) al governo della nave in tabella base ed altri 34 in tabella allargata per periodi di operatività prolungata.
Entrambe le versioni possono lanciare dei gommoni da 7 e 11 m con una gru, mentre a poppa sotto il ponte elicotteri è stato ricavato uno spazio sfruttato in modo diverso a seconda delle versioni: la ASW ospita il sonar filabile rimorchiato, mentre la GP alloca una slitta dalla quale lanciare imbarcazioni RHIB (semirigidi gonfiabili) utilizzate dal Comsubin per le operazioni speciali.











Versioni italiane

Elettronica delle FREMM italiane

Il Sistema di Combattimento delle FREMM Italiane è gestito dal sistema CMS (Combat Management System) ATHENA-I, sviluppato da Selex ES (Leonardo dal 2017). Il sistema missilistico antiaereo è basato sul SAAM-ESD (Extended Self Defence, in luogo dell'inizialmente previsto SAAM-IT, che avrebbe dovuto disporre solo degli Aster 15) per la gestione dei missili, cui è associato il radar multifunzionale attivo 3D EMPAR (SPY-790), sensore principale del sistema. Il sistema dispone di una centrale secondaria in grado di subentrare in caso di distruzione o avaria del sistema principale. A differenza del sistema imbarcato sulle FREMM francesi (SAAM-FR), avente solo capacità di autodifesa grazie ai missili Aster 15, tutte le FREMM italiane dispongono di una capacità di difesa d'area, grazie alla possibilità di utilizzare anche gli Aster 30. Altri sensori sono il radar di scoperta di superficie RASS (RAN30 X/I) in banda E/F della Selex, radar di navigazione a bassa probabilità di intercettazione LPI SPN-730 / Selex SPN 753(V) 4 in banda I, il sistema di scoperta IR SASS Galileo, due sistemi di puntamento multisensore (radar ed elettro-ottico) MSTIS NA 25X (RTN-30X), radar per appontaggio elicotteri, sistema IFF SIR-M5 Pa. Le unità dispongono di sistema comunicazione Datalink Link 11,16 e 22 M-DLP e di sistema comunicazioni satellitare SATCOM. Sonar attivo montato sul bulbo Thales 4110CL dotato di sistema di scoperta mine e telefono subacqueo, con trasduttore WASS del peso di 9 tonnellate metriche ed è composto da 500 idrofoni. Tutte dispongono di sonar anti-mine WASS SNA-2000-I. Le quattro FREMM ASW dispongono anche di echo sounder SeaBeam 3050 multibeam, della L-3 ELAC Nautik e saranno dotate anche di un sonar attivo rimorchiato a profondità variabile (VDS) Thales 4249 a bassa frequenza.

Armamento versione antisom italiana:
  • 2 lanciatori verticali (VLS) in moduli da 8 celle ciascuno del tipo Sylver A-50 per i missili superficie/aria MBDA Aster 15 per la difesa antiaerea a corto raggio (AAW) e per missili superficie/aria MBDA Aster 30 per la difesa antiaerea d'area, nonché compatibili con i futuri ATBM Block 1 NT e Block 2
  • predisposizione per l'installazione di ulteriori 2 lanciatori verticali (VLS) in moduli da 8 celle ciascuno del tipo Sylver A-70 per il missile da crociera superficie/superficie a lungo raggio MBDA Scalp Naval (comunque compatibili anche con missili Aster 15 e 30)
  • 8 lanciatori per missili antinave a lungo raggio del tipo MBDA Teseo Mk2 Block IV e del sistema sistema combinato missile/siluro a medio raggio tipo MBDA Milas per la lotta antisommergibile per la versione Italiana o del solo missile a lungo raggio per la lotta antinave MBDA Exocet MM40 Block 3 per la versione Francese.
  • 2 sistemi lanciasiluri da 324 mm per siluri, con sistema di caricamento semi-automatico, interno MU 90
  • 2 cannoni del tipo Oto Melara 76/62 mm super rapido double feeding Davide/Strales con capacità di utilizzo della munizione guidata DART in funzione antimissile (la versione francese imbarcherà un solo pezzo, priva del sistema Davide).
  • 2 lanciarazzi Oto Melara SCLAR-H DLS
  • 2 sistemi anti-siluro SLAT
  • 2 pezzi Oto Melara / Oerlikon KBA da 25/80 mm
  • 2 elicotteri NH90 o EH101.

Armamento versione multiruolo italiana:
  • 2 lanciatori verticali (VLS) in moduli da 8 celle ciascuno del tipo Sylver A-50 (compatibili anche con missili Aster 15 e 30) per missili superficie/aria MBDA Aster 15 per la difesa antiaerea a corto raggio (AAW) o per missili superficie/aria MBDA Aster 30 per la difesa antiaerea d'area.
  • predisposizione per l'installazione di ulteriori 2 lanciatori verticali (VLS) in moduli da 8 celle ciascuno del tipo Sylver A-70 per il missile da crociera superficie/superficie a lungo raggio MBDA Scalp Naval (comunque compatibili anche con missili Aster 15 e 30)
  • 8 lanciatori per missili antinave impiegabili anche per obiettivi terrestri MBDA Teseo Mk2\A per la versione Italiana o del missile a lungo raggio per la lotta antinave MBDA Exocet MM40 Block 3 per la versione Francese
  • 2 sistemi lanciasiluri B515 trinati da 324 mm per siluri MU 90 con sistema di caricamento semi-automatico, interno
  • 1 cannone del tipo Oto Melara 76/62 mm super rapido double feeding Davide/Strales con capacità di utilizzo della munizione guidata DART in funzione antimissile. La versione italiana lo monterà a poppa sopra l'hangar mentre quella francese (comunque priva del sistema Davide) a prua.
  • 1 cannone del tipo Oto Melara 127/64 mm LW con capacità di utilizzo della munizione guidata tiro di precisione contro bersagli terrestri e navali. Il cannone, avente capacità AAW, ASuW ed NSFS, è equipaggiato con un magazzino automatico di rifornimento contenente 350 proiettili, oltre ai 56 in torre. Cannone presente solo nella versione italiana.
  • 2 lanciarazzi Oto Melara SCLAR-H DLS (sulle ultime tre unità sarà installato il nuovo sistema integrato di contromisure AAW e ASW OTO Melara ODLS-20)
  • 2 pezzi Oto Melara / Oerlikon KBA da 25/80 mm
  • 2 elicotteri tipo NH90 o EH101 o una combinazione di entrambi gli elicotteri.

Le FREMM italiane avranno tutte una capacità di difesa aerea di area, grazie all'EMPAR attivo e allo specifico sistema di combattimento SAAM-ESD. Un'analoga capacità sarà presente sulle FREMM francesi solamente sulle due FREDA.

Caratteristiche Generali

La classe FREMM (Fregate Europee Multi Missione), sviluppata in collaborazione tra Italia e Francia, ha la sua origine nel “Programma Fregate di nuova generazione” con la definizione della Specifica Operativa Generale risalente al gennaio 2003; è composta da due sottoclassi specializzate: General Purpose (GP) ed Antisommergibile (ASW), caratterizzate da una base progettuale comune su cui si innestano diverse peculiarità di seguito descritte. Attualmente le prime due Unità (Nave Carlo Bergamini – Nave Virginio Fasan) sono state consegnate alla Marina Militare rispettivamente il 14 luglio 2012 ed il 19dicembre 2013, mentre le altre 3 sono in costruzione presso i cantieri di Muggiano  e Riva Trigoso (Carlo Margottini – ASW, Carabiniere – ASW, Alpino – ASW). Le Navi, progettate in classe RINA (RINAMIL for FREMM ed. 2006) e nel rispetto delle norme MARPOL, presentano le seguenti caratteristiche generali:
  • lunghezza: 144,6 m;
  • larghezza 19,7 m;
  • pescaggio massimo (in corrispondenza del bulbo) ca. 8,70 m;
  • dislocamento a pieno carico:  ca. 6.900 t.

La propulsione è di tipoCODLAG (COmbined Diesel-Electric And Gas turbine) e si avvale di una turbina LM2500+G4 da 32 MW, 2 motori elettrici reversibili (Jeumont Electric), montati sugli assi, da 2,15 MW ciascuno e due eliche a passo variabile. 
Diverse configurazioni, attraverso un unico riduttore di tipo “cross connected”, rendono possibili tre principali andature:
  • sui motori elettrici alimentati dai generatori diesel (andatura silenziosa fino a 15.6 kts);
  • sulla turbina a gas con una velocità massima di 27 nodi. In questo caso i motori elettrici possono essere trascinati dagli assi e funzionare come generatori;
  • combinata su turbina gas e motori elettrici alimentati dai diesel, che consentono la possibilità di
  • mantenere l’andatura massima, sia in condizioni meteo marine sfavorevoli, sia in seguito all’aumento di dislocamento dell’Unità in prossimità del periodo di fine vita.

Le Unità sono inoltre dotate di thruster azimutale retrattile, della potenza di 1 MW, per mezzo del quale sono in grado di raggiungere la velocità di 7 nodi (propulsione ausiliaria) ed essere di ausilio nelle manovre di ormeggio (elica di manovra); l’autonomia delle Unità è di  6000 miglia nautiche a 15 nodi. 
Le Unità sono equipaggiate con l’innovativo impianto di governo e stabilizzazione denominato “Rudder Roll” che permette il governo e la stabilizzazione dell’Unità per mezzo dei due timoni inclinati di 9°.
 
Segue una sintetica descrizione delle capacità dei principali sistemi imbarcati e di quelli più innovativi come il CMS (Combat Management System), l’INS ed il sistema di gestione della piattaforma denominato SMS (Ship Management System), capace di gestire i sottosistemi di navigazione, propulsione, di controllo nave, di controllo del danno, di controllo elettrico, ausiliario, CBRN, TVCC.

SMS - Ship Management System

L’SMS è un sistema integrato di condotta nave e gestione dei sistemi di piattaforma funzionalmente costituito dall’Integrated Platform Management System (IPMS) che consente la gestione integrata dei seguenti impianti/capacità di piattaforma:
  • apparato propulsivo (tramite S/S SACAM) - TAG, MM.EE.PP. (compreso il funzionamento da generatori asse), riduttore, linee asse, sistema di propulsione ausiliaria (Auxiliary Propulsion Sub-System) e ausiliari dell’ apparato motore;
  • impianto elettrico (tramite S/S SACIE) - diesel generatori, generatori asse e relativi ausiliari, High Voltage Main SwitchBoard (HVMSB), Low Voltage Main SwitchBoard (LVMSB), Secondary SwitchBoard (SSB), Tertiary SwitchBoard (TSB), Distribution Board (DB), quadri presa da terra, trasformatori HV/LV (High/Low Voltage), accessori ed ausiliari;
  • servizi nave relativi allo scafo e alla sicurezza (tramite S/S SACSEN);
  • capacità di Damage Control, integrate nel S/S SACSEN SIC e funzionalità di On Condition Monitoring di supporto agli operatori per la gestione delle manutenzioni (p.e. tramite INS permette di interfacciarsi con il sistema informativo della logistica e manutenzione SIGAM);
  • capacità di simulazione per l’addestramento degli operatori del S/S SACSEN SIC limitatamente alle funzioni della sicurezza;
  • interfaccia con il sistema TVCC al fine di rendere disponibili su tutte le MFC (e su altre periferiche del sistema quali Local Operating Panel - LOP, Large Digital Screen - LDS, Conning, BODs e Portable Terminal Unit - PTU) le immagini provenienti da tutte le telecamere installate a bordo;
  • Integrated Bridge System (IBS) che consente la gestione integrata dei pacchetti applicativi ARPA, ECDIS e dell’HCI del NAVS attraverso le Consolle in Plancia - nella sua funzione di SCC secondaria. Le funzionalità “Conning”, anch’esse disponibili in plancia, sono implementate invece su sistemi video dedicati (Conning Display e Bridge Overhead Display – BOD).
 
Controllo del Danno

Per quanto attiene il controllo del danno, le FREMM sono suddivise in due Damage Control Zone (DCZ che includono due Main Vertical Zone (MVZ) ciascuna.
Ogni DCZ è completamente indipendente per quanto concerne la produzione e la distribuzione dell’energia elettrica. In ogni DCZ si trova, inoltre, un centro per la gestione della difesa passiva, dove sono presenti console dell’SMS simili a quelle presenti in Plancia e SCC (Ship Control Center), configurabili in funzione delle diverse necessità (Damage Control, o tutte le altre funzioni dell’SMS)
Come precedentemente indicato, riguardo ai Sottosistemi che rispondono al SMS, si ricorda che il S/S SACSEN-SIC (Sistema Automatico Controllo Servizi Nave Sicurezza) ha lo scopo di supportare l’operatore in tutte le fasi della gestione della sicurezza della nave ed in particolare durante le situazioni di emergenza. Al fine di intervenire tempestivamente su eventuali principi di incendio, è presente un sistema di sorveglianza detto Fire Detection System (FDS), interfacciato con il S/S SACSEN-SIC e progettato per effettuare la rilevazione tempestiva dell’incendio mediante:
  • controllo delle temperature dei locali;
  • rilevatori presenza di fiamma;
  • rilevatori presenza di fumo.
  • Le segnalazioni di allarme e di stato del sistema sono condotte in due centraline ubicate in SCC Primaria e Secondaria (Plancia).

I principali impianti antincendio presenti a bordo sono i seguenti:
  • Impianti fissi e semifissi a gas NOVEC 1230
  • Impianti fissi di nebulizzazione
  • Impianti fissi a schiuma
  • Impianti Water Mist
  • Impianto Twin Agent
  • N°87 stazioni antincendio
  • Estintori portatili a polvere e CO2.

I principali mezzi di esaurimento sono invece così ripartiti:
  • nr.1 E/P GE da 200 m3/h è installata nel locale Diesel di Pr sul deck 4
  • nr.1 E/P GE da 200 m3/h è installata nel locale Ausiliari sul deck 4
  • nr.1 E/P GE da 400 m3/h è installata nel locale TAG sul deck 4
  • nr.1 E/P GE da 400 m3/h è installata nel locale MEP sul deck 4.

La nave è dotata, inoltre, di quattro EE/PP portatili EMU KS70N (portata 40 t/h, prevalenza 16 m, tensione 440 V, frequenza 60 Hz) distribuite una per MVZ, sono del tipo totalmente immergibile ed in caso di necessità vengono calate nel compartimento allagato della nave. Gli 11 compartimenti stagni sono asserviti da almeno un idroiettore da 15 t/h e, ove assente E/P GE, anche da almeno un idroiettore da 80 t/h. 

Sistema di Combattimento

Il funzionamento del Sistema di Combattimento (C/S) si basa sullo scambio di informazioni (dati) che viaggiano attraverso un’unica dorsale di distribuzione (bus) interna all’unità (INS - Internal Networking System). Tale dorsale è capace di gestire dati di diversa tipologia generati dai sensori/sottosistemi (moduli) che compongono il C/S. Tale sistema di networking integrato (INS) è il principale artefice dell’elevato grado d’integrazione dello stesso C/S.
Tutti i moduli del C/S sono gestiti dal Combat Management System (CMS), unità di Comando e Controllo (C2) che funziona anche quale interfaccia uomo-macchina per mezzo delle MultiFunctional Console (MFC). Soltanto il sistema missilistico TESEO e MILAS, benchè interfacciato con il CMS, é gestito da console dedicata situata in CIC. 
Le modalità di gestione di un S/S da parte del CMS sono di due tipi:
  • Controllo tattico: rappresentato dai comandi elaborati dal CMS per l’utilizzo delle funzionalità tra i vari S/S e il loro coordinamento in base al tipo di missione ed alle condizioni di scenario.
  • Controllo operativo:rappresentato dai comandi di gestione trasmessi al S/S attraverso la sua interfaccia Uomo-Macchina (HCI). Tale controllo può essere esercitato attraverso le MFC o tramite console/pannelli dedicati di apparato (con livelli di operatività eventualmente diversi). In quest’ottica sono disponibili diverse forme di configurazione di ciascun S/S, intendendo, in generale come “configurazione” il  livello di integrazione delle specifiche funzionalità dei/del S/S con quelle dell’intero Sistema di Combattimento.
  • In particolare, sono definiti tre tipi di configurazione d’impiego dei S/S:
  • Integrata: il S/S opera sotto il controllo tattico del CMS, attraverso il segmento C2S (Command and Control System) composto essenzialmente dai calcolatori tattici. Il controllo operativo del S/S è esercitato attraverso le console MFC del CMS o tramite console dedicata situata in CIC (es. TESEO). Lo scambio dati con il resto del C/S avviene tramite INS.
  • Autonoma: il S/S opera fuori dal controllo tattico del CMS. Di conseguenza i dati da esso processati non sono disponibili presso le altre console CMS. Il controllo operativo del S/S è esercitato attraverso le console MFC del CMS o, dove applicabile, tramite console di apparato. Operare fuori dal c.d. controllo tattico del CMS rappresenta una condizione di degrado rispetto alle condizioni di configurazione INTEGRATA. A tal proposito è da evidenziare la possibilità per il segmento C2S del CMS di scollegare funzionalmente tra loro i calcolatori tattici per permettere ad alcuni di essi di operare in configurazione autonoma con i soli collegamenti funzionali del S/S che ne necessita. 

I calcolatori che hanno questa capacità sono quelli di:
  • C2 NSFS (Naval Surface Fire Support) che può operare in configurazione autonoma con il S/S IVS;
  • C2 ASW che può operare in aggregazione con ISS, OAS/MAS, TLS; MDLP che può operare in configurazione autonoma per la gestione dei link tattici.
  • Configurazione locale: il S/S opera in modo isolato rispetto al CMS. Il controllo operativo del S/S è esercitato attraverso console/pannelli dedicati. Lo scambio dati avviene tramite bus dati interni, pertanto la rete INS, anche se disponibile, non viene utilizzata.
All’interno di ogni configurazione, a seconda del livello di intervento richiesto all’operatore nell’espletamento di ogni funzionalità, ogni S/S può assumere diverse modalità operative secondo le seguenti definizioni:

Sensori:

automatico: le funzionalità sono controllate interamente dai processi automatici del SW, senza intervento dell’operatore (ad es: inizializzazione e tracciamento automatico). L’operatore può comunque intervenire per definire e modificare i parametri operativi di sistema che regolano tali processi.
manuale: il sistema è controllato dall’operatore.

Sistemi d’arma:
  • automatico: l’assegnamento dei bersagli e l’inizializzazione del fuoco sono ordinate e gestite dalla funzionalità TEWA (Threath Evaluation and Weapons Assignment) del CMS, senza intervento dell’operatore, a condizione che siano verificate le condizioni di sicurezza. L’operatore può comunque intervenire per definire e modificare i parametri di sistema che regolano tale processo automatico (parametri di dottrina, politiche di fuoco, etc).
  • semi-automatico: l’assegnamento dei bersagli è effettuato automaticamente dalla funzionalità TEWA del CMS. L’operatore deve in ogni caso inizializzare o approvare l’inizializzazione del fuoco.
  • manuale: sia l’assegnamento dei bersagli che l’inizializzazione dell’ingaggio e l’azione di fuoco necessitano di un’approvazione dell’operatore.
  • Peculiarità della versione GP: le Unità GP sono armate con 8 Teseo Mk2A, 1 cannone da 76/62 SR con kit Davide/Strales per munizioni guidate ed 1 cannone da 127/64 LW con sistema Vulcano, in grado di ingaggiare anche bersagli terrestri oltre i 100km con munizionamento guidato.
  • Peculiarità della ASW: le Unità ASW sono armate con 4 Teseo Mk2A e 2 cannoni Oto Melara 76/62 con kit Davide.

Peculiarità Sonar

Tutte le unità sono dotate di un sistema Sonar integrato (ISS), comprendente un sonar attivo Thales 4110CL (BMS) nel bulbo, un Sonar ad alta frequenza per anti-collisione (OAS) che ha anche la capacità MAS di individuare mine ormeggiate/alla deriva,  e telefono subacqueo (UWT). Le Unità ASW sono dotate anche di un Sonar rimorchiato a profondità variabile (TB) attivo a bassa frequenza Thales 4249 (CAPTAS 4) ed una cortina trainata multifunzione (TA), ovvero con funzioni di scoperta sommergibili e difesa antisiluro, integrata con il sistema di lancio contromisure (ASW DLS); la suddetta versione è dotata inoltre di sonar multibeam ad alta frequenza (Panoramic Echo Sounder)  per batigrafia fondale, sulla verticale dell’Unità, sino a 2000m, con capacità di discriminazione di oggetti di medie dimensioni.

Logistica e mezzi imbarcati

Per quanto attiene le capacità logistiche, gli standard abitativi consentono la pianificazione e la conduzione di:
  • “periodi tipici” di operazione in mare della durata di 45 giorni continuativi;
“missioni standard” della durata di sei mesi e comprendenti generalmente:
  • un periodo di deployment iniziale (10-15 gg);
  • due o tre “periodi tipici” in mare, separati da soste in porto di circa 5 giorni continuativi;
  • un periodo di deployment finale (10-15 giorni);
  • “rischieramenti standard” che comprendono una o due “missioni standard” e possono contemplare anche periodi di ripristino efficienza (soste e manutenzioni). La durata di un “rischieramento standard” è di circa nove mesi d’impiego per un totale indicativo di 5.000 ore di moto.

Considerazioni relative alla flessibilità operativa hanno recentemente portato all’adozione di una modifica che ha incrementato il numero di alloggi da165 a 200. Ciò è stato principalmente realizzato con l’uso dello spazio prodiero inizialmente riservato ad un eventuale sistema missilistico Deep Strike.
Per ottenere un miglior bilanciamento delle Unità è stata effettuata una sostituzione di parte delle sovrastrutture originariamente in acciaio con lega leggera.Una serie di valutazioni basate sullo studio di Human Factor commissionato alla I.P. e su recenti esperienze di manning ridotto, sia in ambito nazionale che internazionale, hanno portato dimensionare le tabelle di equipaggiamento a 131 unità per la versione GP e 133 unità per la versione ASW (a cui va aggiunta la Sez.Elicot di 23 unità per la gestione di due velivoli). E’ inoltre stata approvato l’ampliamento della tabella di ulteriori 34 unità (c.d. Tabella allargata) teso a garantire l’elevata disponibilità operativa prevista dal requisito (ad es. per agevolare le manutenzioni ed i servizi di bordo giornalieri).
Per quanto attiene ai mezzi navali imbarcati, tutte le Unità sono dotate di sistemi di sollevamento per la messa a mare ed il recupero di un gommone da 7m e di uno da 11m. Inoltre, la versione GP è dotata di una slitta retrattile a poppetta per il rilascio rapido ed il recupero del RHIB da 11 mt a chiglia rigida in uso presso COMSUBIN.
Le operazioni di recupero/messa a mare del RHIB dalla slitta di poppa possono avvenire senza limitazioni sino a mare stato 3, mentre per lo stato 4 è consigliabile (in base agli studi industriali effettuati in vasca) avere l’Unità madre con mare in prora in modo da schermare parzialmente la poppa dalle onde. 
La versione ASW ospita nello stesso spazio il sonar a profondità variabile (VDS).
Per quanto riguarda, infine, componente di volo, le navi dispongono di un hangar principale, capace di ospitare un EH-101 o un SH-90 con spazi idonei per interventi manutentivi ed un hangar secondario, dimensionato per il solo ricovero di un SH-90. Entrambi sono asserviti da Helo Handling Systems per assicurare e movimentare gli elicotteri dallo spot di atterraggio sino al ricovero completo dei velivoli. Il recente intervento di allungamento del ponte di volo consente maggiore flessibilità nell’impiego dei suddetti elicotteri in condizioni estreme.

Il sistema navale integrato

Il varo dell'ultimo esemplare, il settimo, si è svolto il 4 marzo scorso, nei cantieri di Riva Trigoso, a Genova. Si tratta della fregata "Federico Martinengo", una delle dieci navi italiane che fanno parte del programma FREMM – Fregate Europee Multi Missione, realizzato nell'ambito di un'intesa internazionale che vede l'Italia e la Francia unite da un accordo di cooperazione militare in ambito navale.
Il varo dell’ultimo esemplare, il settimo, si è svolto il 4 marzo scorso, nei cantieri di Riva Trigoso, a Genova. Si tratta della fregata “Federico Martinengo”, una delle dieci navi italiane che fanno parte del programma FREMM – Fregate Europee Multi Missione, realizzato nell’ambito di un’intesa internazionale che vede l’Italia e la Francia unite da un accordo di cooperazione militare in ambito navale.
La fregata FREMM rappresenta, di fatto, un’eccellenza dal punto di vista tecnologico: lunga 144 metri, può raggiungere i ventisette nodi, ospitare fino a duecento persone ed è in grado di operare in diversi scenari e situazioni tattiche critiche. Le sue capacità operative vanno dalla lotta anti-aerea, anti-nave e anti-sommergibile al supporto di fuoco dal mare.
Per l’Italia, il programma FREMM è coordinato da Orizzonte Sistemi Navali, il consorzio formato da Fincantieri (51%) e da Leonardo (49%), che dovrà consegnare, entro il 2022, l’ultima delle nuove fregate alla Marina Militare italiana, destinate a sostituire le unità della classe Lupo e Maestrale.

IL RUOLO DI LEONARDO 

Fornire le migliori tecnologie in grado di gestire scenari operativi diversi e in continua evoluzione: è questo il principio che ha ispirato Leonardo nella realizzazione del più importante programma militare in ambito navale mai costituito a livello europeo.
Infatti, per tutte le unità prodotte in Italia, la Società è responsabile della fornitura e dell’integrazione dell’intero Sistema di Combattimento della nave, costituito dal sistema di gestione CMS (Combat Management System), dai sensori radar ed elettro-ottici per il controllo del tiro e per funzioni di tracciamento, dai sistemi per le comunicazioni e dai sistemi di difesa aerea, di superficie e subacquea.





In particolare, tutte le fregate sono equipaggiate con il radar multifunzionale attivo KRONOS Grand Naval - al centro del sistema di difesa aerea missilistica, radar secondario IFF SIR-M5-PA e di scoperta di superficie RAN-30X/I, radar di navigazione LPI SPN-730 e di appontaggio elicotteri SPN-720, sistema di tracciamento all’infrarosso SASS (Silent Acquisition and Surveillance System) e, infine, con due equipaggiamenti multi-sensore (radar ed elettro-ottico) di controllo del tiro NA-25X. Per la fregata FREMM Leonardo ha inoltre realizzato i sistemi integrati di comunicazioni interne, esterne e tattiche. 
Leonardo fornisce anche i due sistemi di difesa 76/62 mm Super Rapido che utilizzano il munizionamento guidato DART per l’inseguimento dei bersagli, il sonar anti-mine (Mine Avoidance Sonar), le contromisure acustiche contro attacchi provenienti da siluri (Decoy Launching System) e il sistema di lancio siluri leggeri MU90 (Torpedo Launching System). 



Al programma FREMM partecipa anche la società MBDA (consorzio tra Airbus, BAE Systems e Leonardo), responsabile dell’equipaggiamento di difesa anti-aerea SAAM ESD, basato su missili Aster 15 e Aster 30, e del nuovissimo sistema anti-nave Teseo MK2/ Evolved.

(Fonti: Web, Google, RID, Wikipedia, You Tube)






























































 

Nessun commento:

Posta un commento

USAF - T-7A REDHAWK: nelle ultime settimane sono stati riscontrati ulteriori problemi durante i test che hanno richiesto diversi aggiornamenti al software di controllo del volo, che causano problemi di controllo quando l'aereo opera ad alti angoli di attacco.

https://svppbellum.blogspot.com/ Blog dedicato agli appassionati di DIFESA,  storia militare, sicurezza e tecnologia.  La bandiera è un simb...