venerdì 10 dicembre 2021

L’AERONAUTICA MILITARE FINLANDESE HA SCELTO il Lockheed Martin F-35A


“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

La Finlandia dopo aver a lungo valutato varie opportunità europee, ha scelto l’F-35A per il concorso denominato HX Fighter. Lo ha confermato ufficialmente lo stesso Governo finlandese e la Lockheed Martin. 
Il programma prevede la fornitura di 64 caccia stealth. 
Il contratto, che sarà formalizzato a breve e comprenderà anche il supporto logistico, l’addestramento e un pacchetto di offset industriale.




Il caccia della Lockheed Martin ha vinto la competizione finlandese di caccia HX, per un valore di 10 miliardi di euro, o circa 11 miliardi di $.
La Finlandia dovrebbe ora acquisire 64 varianti convenzionali dell'F-35A, equipaggiate con il sistema di scivoli di trascinamento utilizzato anche dalla Norvegia per l'atterraggio in climi ghiacciati, per sostituire i suoi vecchi HORNET F/A-18. Nell'accordo è inclusa anche una suite di armi e un pacchetto di sostegno.
"E' stata una gara dura", ha detto il ministro della Difesa finlandese Antti Kaikkonen durante una conferenza stampa che ha annunciato oggi la decisione.
La società ha battuto un campo affollato di concorrenti, tra cui il Boeing F / A-18E / F Super Hornet, l’Eurofighter Typhoon, il Rafale della Dassault e il Saab Gripen E.  Sembrerebbe che l'F-35 abbia sconfitto facilmente tutti gli avversari.
Il maggiore generale Pasi Jokinen, comandante dell'aeronautica militare finlandese, ha affermato che l'F-35 è arrivato primo o ha condiviso il punteggio più alto in tutte le aree di missione. Complessivamente, il jet ha ottenuto un punteggio di 4,47 nella valutazione della capacità, superando il requisito 4.0. Il secondo miglior marcatore ha ottenuto solo un 3,81.
La competizione HX della Finlandia è stata di particolare interesse per gli osservatori della difesa a causa della sua insolita strategia di acquisizione, che ha permesso alle aziende di offrire un pacchetto di caccia e sistemi complementari per soddisfare i requisiti operativi della Finlandia e il più ampio ambiente di minacce. (Ad esempio, la Saab ha offerto un paio di velivoli di allerta precoce in volo GlobalEye come parte del suo pacchetto, mentre la Boeing includeva un'opzione per gli aerei d'attacco elettronici EA-18G Growler.) 
La competizione è stata coronata da un wargame simulato di due settimane.
"Era importante selezionare il sistema con le migliori capacità possibili, compresi gli elementi di supporto e la capacità di sviluppo per l'intero ciclo di vita", ha affermato Kaikkonen.
I finlandesi hanno preventivato un massimo di 10 miliardi di euro per il programma HX, ovvero circa 11,3 miliardi di dollari. Il costo per 64 aerei F-35 A Block 4 è stimato in 4,7 miliardi di euro, mentre una scorta di missili aria-aria AMRAAM e Sidewinder arriverà a 755 milioni di euro e un pacchetto di servizi di manutenzione fino al 2030 costerà 2,9 miliardi di euro .
L'aereo di Lockheed ha battuto altri quattro concorrenti: l'F-18 Super Hornet di Boeing, il Rafale di Dassault, l'Eurofighter Typhoon e il Gripen di Saab. Il processo di valutazione ha visto l'F-35 "superare" i criteri di selezione di sicurezza dell'approvvigionamento e partecipazione industriale e accessibilità, secondo la dichiarazione del MOD. Ha anche ottenuto il punteggio più alto nell'area della capacità militare.
Lockheed Martin si è affrettato a sottolineare in un video promozionale pubblicato su Twitter che la decisione finlandese lo rende il nono paese in Europa a scegliere il caccia da combattimento di quinta generazione dell'appaltatore. La mossa significa che la concorrenza nei cortili dei produttori locali Airbus, Dassault e Saab si è riscaldata ancora di più.
In una dichiarazione, Dassault ha dipinto la scelta della Finlandia come una decisione a favore degli Stati Uniti, presumibilmente sui suoi vicini del continente. “Ancora una volta notiamo e ci rammarichiamo di una preferenza americana prevalente in Europa”, si legge nel comunicato, pubblicato sul sito web dell'azienda.
Uno dei criteri di selezione finlandesi era la comunità di utenti multinazionale e "grande", ha affermato il MOD. "Il sistema è in servizio in molte nazioni europee tra cui Norvegia e Danimarca".
Il primo F-35 è atteso in Finlandia nel 2026.






Il Lockheed Martin F-35 Lightning II, è un caccia multiruolo monoposto di 5ª generazione, spinto da un singolo propulsore, con ala trapezoidale a caratteristiche stealth. 

Le sue spinte capacità multiruolo lo rendono utilizzabile per compiti di supporto aereo ravvicinato, bombardamento tattico e missioni di superiorità aerea.
Battendo il Boeing X-32, è diventato il vincitore della gara per il programma JSF (Joint Strike Fighter) per la ricerca di un aereo che potesse sostituire diversi modelli dell'USAF, dell'US Navy e dei USMC (Marines). Inizialmente era previsto che circa l'80% delle parti fosse in comune fra le diverse versioni, ma poi, con l'evolversi del progetto, non si è potuto raggiungere più del 25/27%, sebbene l'elettronica di bordo e una parte del software sono molto simili e strettamente integrate.

Esistono tre versioni dell'F-35: 
  • F 35 A, variante a decollo e atterraggio convenzionale (Conventional Take Off and Landing);
  • F 35 B, variante a decollo corto e atterraggio verticale, per poter operare da portaerei di dimensioni ridotte come la portaerei italiana Cavour (Short Take Off And Vertical Landing);
  • F 35 C, variante per l'uso su portaerei convenzionali dotate di catapulte.

Storia del progetto

Molti Paesi, anche europei, hanno adottato o stanno attentamente valutando il velivolo per sostituire alcune tipologie di aerei da combattimento delle proprie aeronautiche o marine militari. 
Il progetto è ormai completato per le versioni A e B, mentre la versione C è in fase di finalizzazione. Il costo complessivo supera i 55 miliardi di dollari USA ed è finanziato principalmente dagli Stati Uniti e dal Regno Unito (che ha fornito un contributo di 2 miliardi di dollari) ed anche dall’Italia con circa un miliardo di $.
Gli Stati Uniti intendono acquistare oltre 2.443 aerei per un costo di 323 miliardi di dollari, rendendolo il programma della difesa più costoso della storia. Il budget dell'USAF per il 2010 prevedeva di avere l'F-35 ad un costo flyaway di US$ 89 milioni basato sulla pianificata produzione dei suoi 1.753 F-35A. Lockheed Martin sta costantemente riducendo i costi stimati del governo del 20%.
Il costo per unità prodotta risulta in costante decremento: si è passati dai 279 milioni di dollari per il primo lotto di F-35A ai 102 milioni per il lotto 9 in produzione da novembre 2016; per l'F-35B il costo per il lotto 9 è di 131 milioni, per l'F-35C il costo per il lotto 9 è di 132 milioni. Con il lotto 10 è prevista la riduzione del costo per l'F-35A a 95 milioni di dollari, per l'F-35B a 123 milioni e per l'F-35C a 122 milioni. Alla data odierna il costo della versione A è di circa 80 milioni di dollari statunitensi per ogni aeromobile.

Il programma JSF

Il programma JSF (Joint Strike Fighter) venne creato per sostituire molti velivoli mantenendo i costi di sviluppo, produzione e operativi bassi. Questo scopo fu perseguito costruendo tre varianti di un singolo velivolo, in modo da condividerne i componenti.

Cellula

L'F-35 appare più piccolo e leggermente più tradizionale del bimotore F-22 Raptor. Il progetto del condotto di scarico si è ispirato al modello 200 della General Dynamics, un aereo VTOL del 1972 progettato per le Sea Control Ship. I progettisti della Lockheed hanno lavorato assieme al Yakovlev Design Bureau, che progettò l'aereo Yakovlev Yak-141 "Freestyle" negli anni novanta. La tecnologia stealth rende l'aereo difficile da individuare mentre si avvicina ai radar a corto raggio.
Rispetto alla generazione precedente, gli obiettivi di questo progetto sono di creare un velivolo:
con tecnologia stealth a bassa manutenzione e durevole;
con sistemi avionici integrati con i sensori per combinare le informazioni e aumentare la conoscenza del pilota sulla situazione circostante, l'identificazione e lo sgancio delle armi e l'invio veloce di informazioni ad altri nodi di controllo e comando;
con una rete interna ad alta velocità e fibre ottiche.

Sistemi, Impianti e Abitacolo

L'F-35 possiede un display di tipo "panoramic cockpit display (PCD)" con dimensioni di 50 x 20 cm. Un sistema di riconoscimento vocale permette di aumentare le capacità del pilota di interagire con il velivolo. L'F-35 sarà il primo aereo ad ala fissa operativo ad usare questo sistema, anche se soluzioni simili sono state utilizzate nell'AV-8B e sperimentati in altri aerei, come l'F-16 VISTA e nell’Eurofighter EF2000.
Un sistema di visualizzazione sul casco del pilota sarà integrato in tutti i modelli dell'F-35. Anche se alcuni caccia di quarta generazione utilizzano già  questo sistema assieme ad un visore a testa alta (HUD), l'F-35 sarà il primo caccia moderno ad essere progettato senza dotazione di HUD.
Il pilota può manovrare l'aereo tramite un joystick sul lato destro e una manetta per il controllo della spinta a sinistra.
In tutte le varianti dell'F-35 sarà impiegato il sedile US16E, costruito dalla Martin-Baker, che soddisfa i requisiti sulle performance ed impiega un sistema a doppia catapulta contenuto in binari laterali.

Sensori

Il sensore principale è il radar APG-81, progettato dalla Northrop Grumman Electronic Systems. Verrà integrato dal sistema elettro-ottico di puntamento, montato sotto il muso dell'aereo e progettato dalla Lockheed Martin e dalla BAE. Lungo tutto l'aereo sono distribuiti ulteriori sensori elettro-ottici, come parte del sistema AN/AAS-37, che funge da sistema di allerta per il lancio di missili e può aiutare la navigazione e le operazioni notturne.

Software

Il sistema software che gestirà l'aereo è costituito da oltre 8,3 milioni di linee di codice, che gli consentirà di gestire i controlli di volo, le funzionalità del radar, comunicazioni, navigazione, identificazione, gestire gli attacchi elettronici, integrare i dati dei sensori, dispiegare le armi. Per capire la portata del sistema software basti confrontarlo con l'F22 Raptor, primo aereo di quinta generazione, che ha "soltanto" 2 milioni di linee di codice.
Lo sviluppo del software verrà effettuato tramite 6 release denominati block:
  • Block 1A / 1B. Il block 1 comprende il 78% delle 8,3 milioni di linee di codice sorgente richieste per la piena capacità militare. Il blocco 1A sarà la configurazione per il training di base, il blocco 1B fornirà i primi livelli di sicurezza.
  • Block 2A. Il block 2A comprende l'86% del codice previsto e consentirà fusione off-board, link dati, attacchi elettronici e definizione delle missioni.
  • Block 2B. Il block 2B comprende l'87% del codice previsto e fornirà le funzionalità iniziali di guerra.
  • Block 3i - il block 3i comprenderà l'89 per cento del codice previsto e fornirà le stesse capacità tattiche del blocco 2B. La principale differenza tra 2B e 3i è l'implementazione di nuovi hardware, in particolare il processore integrato di aggiornamento.
  • Block 3F. Il block 3F fornisce il 100 per cento del software richiesto per la completa capacità militare.

Sistemi d'arma

L'F-35 impiega un cannone a quattro canne GAU-22/A da 25 mm. Il cannone è montato internamente con 180 colpi nella variante F-35A, mentre nelle altre varianti F-35B e C è disponibile in un pod esterno (stealth) con 220 colpi.
Nelle due stive interne possono essere inserite varie combinazioni di armamenti, come, due missili aria-aria e due armi aria-terra (fino a due bombe da 910 kg - 2 000 lb nei modelli A e C; due bombe da 450 kg - 1 000 lb nel modello B). L'armamento impiegabile include missili AIM-120 AMRAAM, AIM-132 ASRAAM, il Joint Direct Attack Munition (JDAM) — fino a 2 000 lb (910 kg), il Joint Standoff Weapon (JSOW), le bombe GBU-39 (un massimo di quattro in ogni stiva), i missili Brimstone, le munizioni a grappolo (WCMD) e i missili AARGM-ER, della Orbital ATK, che sono la versione con nuovo triplo sistema di guida, raggio d'azione raddoppiato e dimensioni compatibili con la stiva interna dell'F-35A e C, del precedente AGM-88 HARM. Il missile aria-aria MBDA Meteor è in fase di adattamento per essere alloggiato negli F-35. Il Regno Unito ha pianificato originalmente di posizionare internamente quattro missili AIM-132 ASRAAM, ma i piani sono stati modificati per caricare due missili ASRAAM internamente e altri due esternamente.
Possono essere agganciati altri missili, bombe e serbatoi di carburante ai quattro piloni alari e nelle due posizioni sulle punte delle ali, ma con lo svantaggio di rendere l'aereo più rilevabile dai radar. Sull'estremità delle ali possono essere inseriti solo missili di tipi AIM-9X Sidewinder, mentre i missili AIM-120 AMRAAM, Storm Shadow, AGM-158 JASSM e i serbatoi di carburante possono essere inseriti nei piloni alari. Impiegando le posizioni interne ed esterne potrebbe essere impiegata una configurazione aria-aria con oltre otto AIM-120 e due AIM-9, oppure una configurazione aria-terra con sei bombe da 2000 lb, due AIM-120 e due AIM-9. Con la sua capacità di carico, l'F-35 può trasportare più armi aria-aria e aria-terra dei suoi predecessori.

Partecipazione internazionale al progetto

Oltre agli Stati Uniti, il principale cliente e finanziatore, hanno contribuito anche Gran Bretagna, Italia, Paesi Bassi, Canada, Turchia, Australia, Norvegia e Danimarca con un totale di 4 375 milioni di dollari nella fase di sviluppo. I costi totali sono stimati in più di 40 miliardi di dollari (coperti in gran parte dagli Stati Uniti), mentre l'acquisto dei 2 400 esemplari previsti è stimato in ulteriori 200 miliardi di dollari. Le nove nazioni partner principali prevedono di acquistare più di 3100 esemplari entro il 2035.
Ci sono tre livelli di partecipazione internazionale, che riflettono l'impegno finanziario comune nel programma, la quantità di tecnologia trasferita e l'ordine con il quale le nazioni possono ottenere esemplari di produzione. Il Regno Unito è l'unico partner di "livello 1", con un contributo di 2,5 miliardi di dollari, pari al 10% dei costi di sviluppo. I partner di "livello 2" sono l'Italia, che contribuisce con $1 miliardo e i Paesi Bassi con un contributo di $800 milioni. I partner di "livello 3" sono Canada ($440 milioni), Turchia ($175 milioni), Australia ($144 milioni), Norvegia ($122 milioni) e Danimarca ($110 milioni). Israele, la Norvegia e Singapore partecipano al programma in qualità di "Security Cooperative Partecipants".
Le uniche forze aeree interessate alla versione B sono lo United States Marine Corps degli Stati Uniti, l'Aeronautica Militare e l'Aviazione Navale dell'Italia, la Royal Air Force e la Fleet Air Arm della Gran Bretagna. La Gran Bretagna, nell'ambito della revisione dei programmi della difesa attuata dall'allora neo-insediato governo Cameron, nel 2010, aveva annunciato l'intenzione di abbandonare completamente la versione B, scegliendo in sua vece la versione C, e di voler modificare di conseguenza le portaerei in costruzione della Classe Queen Elizabeth da STOVL a CATOBAR. Tuttavia, nel maggio del 2012 una nuova analisi dei costi e dei tempi per realizzare le pesanti modifiche sulle predette portaerei, oltre ai mancati ritorni per l'industria motoristica nazionale, ha indotto lo stesso governo Cameron a ritornare sui suoi passi e a riconfermare l'acquisizione della versione B.
La Marina Italiana, in quanto la portaerei Cavour ha un ponte di volo troppo corto per ospitare caccia a decollo convenzionale e non essendovi al mondo alcun altro STOVL in via di sviluppo, sostituirà gli attuali AV-8B Harrier II della Marina Militare con l'F-35B.
Tra il 3 e il 5 febbraio 2016 un F-35A Lightning II dell'AMI ha effettuato il primo volo transatlantico di un F-35, volando dall'aeroporto di Cameri fino alla base aerea della Marina militare statunitense di Patuxent River, nel Maryland, con una sosta a Lajes das Flores, nelle Azzorre e grazie al rifornimento in volo da parte di un Boeing KC-767. Il velivolo utilizzato per il volo, denominato AL-1, è il primo completamente costruito in Italia nella Final Assembly & Check-Out (F.A.C.O.) di Cameri - Novara.

Impiego operativo

Nel giugno del 2015 l'F-35A partecipava alla "Green Flag": manovre durante le quali gli aerei testavano la loro capacità di attacco ad aree densamente difese da caccia intercettori e missili terra-aria. Durante la simulazione l'F-35 risultava essere l'unico aereo a non subire abbattimenti.
Nel giugno 2016 effettuava una simulazione di combattimento con gli F-15 riportando uno score di 0 a 8, nessun F-35 abbattuto contro 8 F-15 abbattuti.
Il 2 agosto 2016 il gen. Hawk Carlisle dichiarava l'F-35A Lightning II 'combat ready', la IOC "Initial Operational Capability" e cioè che "aveva raggiunto la capacità operativa iniziale" la FOC "Full Operational Capability" verrà raggiunta dopo i test sul block 3F del software.
Nel gennaio del 2017 l'F-35A partecipava alla "Red Flag": scontri simulati tra caccia degli USA e quelli dei suoi alleati. Durante i test l'F-35 otteneva il miglior risultato tra gli aerei presenti con un rapporto di 1 a 20 (un aereo perso ogni 20 abbattuti) definito dal Corpo dei Marines e dall'USAF "senza precedenti". Il risultato è stato ottenuto sebbene l'aereo avesse il software in versione "Block 3i" che contiene l'89% del codice previsto per la piena operatività militare che sarà raggiunta con il "Block 3F".
Fonti giornalistiche, basate su informazioni provenienti dai servizi segreti francesi, riportavano che il primo impiego militare dell'F-35 sarebbe avvenuto nella notte tra il 12 e il 13 gennaio 2017, in un'incursione aerea compiuta sul teatro di guerra in Siria dall'aviazione militare israeliana, usando i primi due F-35 consegnati appena un mese prima per colpire obiettivi nell'aeroporto militare di Mezzeh, presso Damasco: durante l'operazione, che non avrebbe causato alcuna vittima, sarebbe stata distrutta una rampa di missili SAM S-300 e un deposito di missili, al fine di scongiurare il rischio di una consegna di tali sistemi d'arma a gruppi Hezbollah attivi in Libano. Le stesse fonti di intelligence riferivano di un'azione dimostrativa di uno dei due aeromobili durante il rientro alla base dopo il raid, un passaggio di avvertimento ravvicinato sul palazzo presidenziale di Bashar al-Assad a Damasco.
Nel luglio del 2017 l'aereo raggiungeva le 100.000 ore di volo senza la perdita di nessun velivolo per incidente, collocandosi tra gli aerei militari più sicuri.
Il primo marzo 2018 l'aeronautica militare italiana attribuisce la capacità operatività iniziale agli F-35 in dotazione al 32º Stormo di Amendola che così entrano a far parte del dispositivo di Difesa Aerea Nazionale in quanto inseriti nel Servizio di Sorveglianza dello Spazio Aereo (S.S.S.A.).
Nel maggio del 2018 l'esercito israeliano (IDF) ha dichiarato che gli F-35 sono operativi e sono stati utilizzati in due missioni di bombardamento su due differenti fronti. Israele diventa così la prima nazione ad avere usato gli F-35 in uno scenario di guerra.
Il 27/09/2018 in Afganistan un F-35B dell'US Marine Corps ha effettuato un attacco su posizioni dei talebani, si tratta della prima operazione militare condotta da questa variante dell'aereo.
Il 28/09/2018 nel sud della California un F-35B di un reparto di addestramento dell'US Marine Corps è precipitato al suolo distruggendosi, diventando il primo F-35 perso per incidente, il pilota eiettatosi è sopravvissuto.

Utilizzatori: Australia, Belgio, Corea del Sud, Danimarca, Giappone, Israele, Italia, Norvegia, Paesi Bassi, Regno Unito, Singapore, Stati Uniti, Norvegia, Belgio, Finlandia.

Motori

Inizialmente erano stati sviluppati due diversi propulsori per l'F-35: il Pratt & Whitney F135 ed il General Electric/Rolls-Royce F136, il secondo, nonostante le proteste di Rolls-Royce (che comunque rimane responsabile per la costruzione/integrazione del gruppo trasmissione/ventola per la versione STOVL ad atterraggio verticale) è stato annullato.
Il sistema di decollo verticale, della versione STOVL (Short Take Off Vertical Landing) è composto dal motore, una turboventola a basso rapporto di diluizione con postbruciatore come su un normale aereo da combattimento, fornito di un ugello di coda dotato di un particolare meccanismo di rotazione che permette di orientare il flusso dei gas di scarico verso il basso, e da una ventola anteriore verticale (a due stadi controrotanti), posta subito dietro l'abitacolo, la quale, quando innestata attraverso un albero e un giunto di collegamento all'albero della turbina di bassa pressione del motore, trasforma il propulsore in una sorta di turboventola ad alto rapporto di diluizione a flussi separati ottenendo, grazie al miglior rendimento di questo tipo di propulsore, un surplus di spinta che viene utilizzato per il sostentamento verticale della parte anteriore e centrale del velivolo. Il controllo del rollio viene effettuato deviando aria pressurizzata, spillata dal compressore a bassa pressione, verso ugelli posti sotto le ali. Il motore produce una spinta di 128,1 kN a secco e 191,3 kN (213,5 kN al decollo) con post-combustione inserita; quando la ventola anteriore è innestata, la spinta (ottenuta a secco) diventa di 80 kN dall'ugello di coda, 89 kN dalla ventola anteriore verticale e 8,7 kN da ciascuno dei due ugelli per il controllo laterale, per un totale di 186,4 kN.
Rispetto alla normale turboventola ad alto rapporto di diluizione a flussi separati utilizzata sull'Harrier, questo sistema di propulsione presenta il vantaggio che, una volta disinnestata la ventola anteriore, può essere utilizzato anche a velocità supersonica. Inoltre, il raffreddamento aggiuntivo dei gas di scarico operato dal maggior lavoro sottratto loro dalla turbina a bassa pressione per il funzionamento della ventola anteriore, diminuisce la quantità di aria ad alta velocità e ad elevata temperatura che viene proiettata verso il basso durante il decollo e che può danneggiare i ponti delle portaerei e le piste di decollo.
Il Pratt & Whitney F135 è un motore a turboventola con postbruciatore sviluppato per il caccia multiruolo F-35 Lightning II. La famiglia dei propulsori F135 ha diverse varianti, tra cui una versione convenzionale e una versione STOVL (Short Take Off Vertical Landing) che comprende una ventola per la spinta verticale chiamata Rolls-Royce LiftSystem. Il primo esemplare di produzione in versione STOVL è stato consegnato a dicembre 2010.
Le origini del propulsore risalgono ad un programma DARPA del 1986 che mirava a sviluppare un aereo da caccia con capacità stealth e STOVL per il Corpo dei Marines statunitense da parte del team Skunk Works della Lockheed Martin. Paul Bevilaqua, un progettista della Lockheed concepì e brevettò un prototipo di aereo, e la Pratt & Whitney (P&W) sviluppò il propulsore. Questo dimostratore impiegava la ventola del primo stadio di un propulsore F119 come ventola di sollevamento, e le ventole del modello F100-220 per il propulsore. Inoltre venne impiegata la grande turbina a bassa pressione della versione F100-229, in modo da poter raggiungere la potenza necessaria per la ventola di sollevamento e un ugello a spinta variabile. Questo dimostratore fornì le basi per lo sviluppo del propulsore F135.
Al termine del 2010 il propulsore ha completato 20 000 ore di test, terminando la fase di sviluppo e di dimostrazione ed è stato consegnato il primo esemplare di produzione. Gli aerei F-35 utilizzeranno questo propulsore o il propulsore alternativo F136, sviluppato da un team GE/Rolls-Royce.
Il team di sviluppo del F135 è composto da Pratt & Whitney, Rolls-Royce e Hamilton Sundstrand. La P&W è il prime contractor ed è responsabile del propulsore principale e dell'integrazione dei sistemi, mentre la Rolls-Royce si occupa del sistema di sollevamento verticale per la versione STOVL e la Hamilton Sundstrand sviluppa principalmente il sistema di controllo elettronico, il sistema relativo al carburante e il sistema di attuatori. Il programma di sviluppo ha subìto un ritardo di 13 mesi.
Lo sviluppo del propulsore non è terminato, poiché è iniziato nel 2009 un progetto riguardante una versione del propulsore più durevole, in grado di aumentare la vita dei componenti chiave. Questi sono principalmente contenuti nelle parti calde del motore (la camera di combustione e le palette della turbina ad alta pressione), poiché le elevate temperature riducono la durata dei componenti. Il propulsore di test è chiamato XTE68/LF1.
Sotto pressione del Pentagono, la P&W mira a produrre l'F135 ad un prezzo inferiore rispetto all'F119, anche se questo è più potente.
L'F-135 è un propulsore a turboventola con un compressore a tre stadi a bassa pressione e a sei stadi ad alta pressione. La sezione calda comprende un combustore anulare con una turbina a singolo stadio ad alta pressione e una turbina a doppio stadio a bassa pressione. Il postbruciatore contiene un ugello convergente-divergente variabile.
Le versioni convenzionale (F135-PW-100) e per portaerei (F135-PW-400) hanno una spinta con postbruciatore di circa 191 kN e una spinta a secco di circa 125 kN. La differenza principale tra i modelli 100 e 400 consiste nell'impiego di materiali resistenti alla corrosione del sale per la versione da portaerei.
La versione STOVL (F135-PW-600) ha le stesse prestazioni, con la produzione di 80,1 kN di spinta verticale. Combinata con la spinta della ventola di sollevamento (89,0 kN) e dei due ugelli posizionati nell'attaccatura delle ali per il controllo del rollio (8,67 kN ciascuno), il sistema Rolls-Royce LiftSystem raggiunge una spinta totale di 186 kN, quasi la stessa prodotta dal propulsore stesso in modalità postbruciatore, senza tuttavia l'ingente consumo di carburante e il calore dei gas di scarico.
Uno degli obiettivi primari del progetto F135 consisteva nel migliorare l'affidabilità e la facilità di manutenzione. Il propulsore è stato quindi progettato con un minor numero di componenti. Molti di essi, chiamati line-replaceable components, possono essere rimossi e sostituiti con l'ausilio di sei strumenti a mano. Inoltre, il sistema health management system permette di trasmettere ai tecnici a terra dati in tempo reale, permettendo la preparazione delle riparazioni prima che l'aereo ritorni alla base. Secondo il costruttore, questi dati possono ridurre drasticamente (fino al 94%) i tempi di riparazione e di diagnosi dei guasti rispetto ad un propulsore tradizionale.
I propulsori F135/F136 non sono stati progettati per volare in modalità supercrociera.

Varianti del motore:
  • F135-PW-100: Impiegato nella variante F-35A a decollo e atterraggio convenzionale
  • F135-PW-400: Impiegato nella variante F-35C per portaerei
  • F135-PW-600: Impiegato nella variante F-35B STOVL, a decollo corto e atterraggio verticale.

IL SISTEMA  E.O.T.S.

Il sistema di puntamento elettro-ottico (EOTS) per l'F-35 Lightning II è un sistema di puntamento ad alte prestazioni, leggero e multifunzione che fornisce precisione e capacità di puntamento aria-aria e aria-superficie. L'EOTS a bassa resistenza aerodinamica e furtivo è integrato nella fusoliera dell'F-35 Lightning II ed è riparato da un vetro zaffiro: è collegato al computer centrale integrato dell'aereo attraverso un'interfaccia a fibre ottiche ad alta velocità.
Come primo sensore a combinare le funzionalità di ricerca e tracciamento a infrarossi, l’EOTS migliora la consapevolezza della situazione dei piloti dell'F-35 e consente agli equipaggi di identificare le aree di interesse, effettuare ricognizioni e lanciare con precisione armi guidate laser e GPS. Lockheed Martin ha consegnato oltre 300 sistemi per l'F-35 Lightning II.
L’Advanced EOTS è disponibile per lo sviluppo del blok4 dell'F-35. 
Progettato per sostituire l'EOTS, Advanced EOTS incorpora un'ampia gamma di miglioramenti e aggiornamenti, tra cui l'infrarosso a onde corte, la TV hd, un marcatore a infrarossi e una migliore risoluzione del rivelatore di immagini. Questi miglioramenti aumentano la portata di riconoscimento e di rilevamento dei piloti dell'F-35, consentendo una maggiore prestazione complessiva per il  puntamento.
Northrop-Grumman Electronic Systems e Lockheed-Martin Missiles and Fire Control stanno sviluppando l'EO DAS e l'EOTS per l'F-35. Questo sensore multifunzione è basato sulla collaudata tecnologia Sniper XR e sarà trasportato internamente sotto il muso dell’F-35. Sarà collegato al computer principale tramite un'interfaccia in fibra ottica ad alta velocità che soddisfa i requisiti dell'architettura di sistema integrata. Il ruolo primario di questo sensore è quello di fornire una maggiore capacità di rilevamento e puntamento a lungo raggio rispetto alle precedenti generazioni di sistemi di puntamento montati sugli aerei.
L'EOTS comprende una FLIR di terza generazione, un laser e una telecamera CCD-TV che fornisce il rilevamento e l'identificazione del bersaglio a distanze di stallo notevolmente superiori, immagini ad alta risoluzione, inseguimento automatico, ricerca e inseguimento infrarosso IRST, designazione laser, telemetro laser e inseguimento laser spot tracking. Le funzionalità del sottosistema EOTS F-35 saranno ampliate in futuro.
In tutta onestà, l'F-35 potrebbe non avere alcune capacità chiave di supporto aereo ravvicinato che si trovano su altri velivoli, ma ha anche alcune capacità che nessun altro caccia ha che lo aiuteranno in quella missione. Il più grande è, ancora una volta, un livello di fusione dei sensori non realizzato in precedenza e un'interfaccia uomo-macchina intuitiva. Mentre un pilota dell'F-16 deve far funzionare i suoi sistemi e sensori in gran parte come dispositivi individuali, i sensori e i sistemi dell'F-35 funzionano come una squadra senza soluzione di continuità.
Per esempio, il pilota dell'F-35 può semplicemente guardare un bersaglio e far scattare immediatamente ogni sensore in quel punto nello spazio. Mappatura radar, immagini EOTS, contatti data-link, indicazioni del bersaglio in movimento a terra e tutto il resto appariranno istantaneamente sul display montato sul casco del pilota e sul pannello "vetro" a testa in giù. Non c'è bisogno di "spingere" manualmente i dati nella cabina di pilotaggio del jet in quanto i sensori e i sistemi vedono tutti esattamente la stessa cosa. Questa capacità può far risparmiare tempo e migliorare la consapevolezza della situazione. Inoltre, il Distributed Aperture System (DAS) dell'F-35 è in grado di rilevare gli incendi a terra e i veicoli in movimento, avvisando il pilota sul luogo in cui tali azioni si stanno svolgendo. Infine, di notte il pilota dell'F-35 avrà una maggiore consapevolezza della situazione rispetto a qualsiasi altro equipaggio di aerei da combattimento, sfruttando ancora una volta il DAS, il loro display montato sul casco e la fusione dei sensori. Il pilota dell'F-35 può guardare attraverso il pavimento del suo jet verso il bersaglio sottostante con una visione panoramica.
L'EOTS permette altresì di concentrarsi sul tracciamento del prossimo bersaglio da ingaggiare, localizzando forze amichevoli, o scansionando i cieli alla ricerca di elicotteri nemici e aerei da combattimento. In poche parole, due sistemi di puntamento EO sono migliori di uno, specialmente quando i loro dati sono fusi insieme senza soluzione di continuità.
Alla fine, si potrebbe pensare anche di aggiungere un poi esterno di puntamento avanzato alla lista dei carichi esterni dell'F-35 soprattutto in funzione C.A.S.. 

Cockpit:
  • La cabina di pilotaggio dell’F-35 utilizza un display panoramico touchscreen da 20 x 8 pollici.
  • Un sistema di riconoscimento vocale in cabina di pilotaggio.
  • Un sistema di visualizzazione montato sul casco.
  • Un joistick laterale destro HOTAS.
  • Un sedile ad espulsione Martin-Baker US16E.
  • Un sistema di lancio per la catapulta alloggiato in guide laterali.
  • Un sistema generatore di ossigeno.

Sensori e avionica

Il sensore e la suite di sensori e comunicazioni dell'F-35 ha capacità di consapevolezza della situazione, comando e controllo e capacità di guerra network-centric. Il sensore principale a bordo è il radar a scansione elettronica attiva AN/APG-81, progettato da Northrop Grumman Electronic Systems, integrato dal sistema di puntamento elettro-ottico (EOTS) montato sotto il muso prodiero. Il sistema AN/ASQ-239 (Barracuda) è una versione migliorata della suite di guerra elettronica AN/ALR-94 dell'F-22, che fornisce una fusione di sensori a radiofrequenza e funzioni di tracciamento a infrarossi, un ricevitore avanzato di allarme radar che include il targeting geolocalizzazione delle minacce, contromisure multispettrali per l'autodifesa contro i missili, consapevolezza situazionale e sorveglianza elettronica, utilizzando 10 antenne a radiofrequenza incorporate nei bordi dell'ala e della coda. Nel settembre 2015, Lockheed ha presentato "Advanced EOTS" che offre capacità di risoluzione del rivelatore di immagini ad infrarossi a onde corte, TV ad alta definizione, marker a infrarossi e superiori. Offerto per la configurazione del blok 4, si adatta alla stessa area dell'EOTS di base con modifiche minime, pur conservando le caratteristiche stealth.
Sei sensori a infrarossi passivi supplementari sono distribuiti sull'aereo come parte del sistema elettro-ottico ad apertura distribuita (DAS) AN/AAQ-37 di Northrop Grumman, che funge da sistema di allarme missilistico, segnala i punti di lancio dei missili, rileva e segue gli aerei in avvicinamento all'F-35 e sostituisce i tradizionali dispositivi di visione notturna. Tutte le funzioni DAS sono eseguite simultaneamente, in ogni direzione, in ogni momento. I sistemi di guerra elettronici sono progettati dalla BAE Systems e comprendono componenti Northrop Grumman. Funzioni come il sistema di puntamento elettro-ottico e il sistema di guerra elettronica non sono solitamente integrati nei caccia. Un sensore DAS montato in una piattaforma di prova ha rilevato un lancio di missili balistici a due stadi a 1.300 chilometri di distanza.
La suite di comunicazione, navigazione e identificazione (CNI) è stata progettata da Northrop Grumman e include il Multifunction Advanced Data Link (MADL), come uno dei sei diversi collegamenti. L'F-35 sarà il primo caccia con fusione di sensori che combina la radiofrequenza e il tracking IR per il rilevamento e l'identificazione continua di bersagli in tutte le direzioni che viene condiviso via MADL ad altre piattaforme senza compromettere la bassa osservabilità. 
Il Link 16 è incluso anche per la comunicazione con i sistemi legacy.
L’F-35 è stato progettato con la sinergia tra sensori come requisito specifico; ci si aspetta che i "sensi" dell'aereo forniscano un'immagine più coesa dello spazio di battaglia intorno ad esso e siano disponibili per l'uso in qualsiasi modo e combinazione possibile; per esempio, il radar multimodale AN/APG-81 agisce anche come parte del sistema di guerra elettronica.
Il Program Executive Officer (PEO) General Bogdan ha descritto il software di fusione dei sensori come una delle parti più complicate del programma.
Gran parte del software dell'F-35 è scritto in C e C+++ a causa della disponibilità del programmatore; anche il codice Ada83 viene riutilizzato dall'F-22. Il sistema operativo in tempo reale (RTOS) Integrity DO-178B di Green Hills Software funziona su processori COTS Freescale PowerPC.
Il software finale del blok 3 avrà 8,6 milioni di righe di codice. Nel 2010, i funzionari del Pentagono hanno scoperto che potrebbe essere necessario un software aggiuntivo.
I sistemi di guerra elettronica e di elettro-ottica sono destinati a rilevare e scansionare gli aerei, consentendo l'ingaggio e la distruzione di un aereo ostile prima di essere rilevato. Il banco di prova dell'avionica CATbird ha dimostrato di essere in grado di rilevare e disturbare i radar, compreso l'AN/APG-77 dell'F-22. L'F-35 era considerato in precedenza una piattaforma per il Jammer di nuova generazione: per questa capacità l'attenzione si è ora spostata sull'utilizzo di UAV. 
Diversi sottosistemi utilizzano FPGA Xilinx; questi componenti COTS consentono di fornire aggiornamenti software dal settore commerciale e aggiornamenti software della flotta per i sistemi radio SDR.
Un ufficiale dell’USAF ha proposto di utilizzare l'F-35 per controllore e coordinatore di più aerei da combattimento senza equipaggio (UCAV). Utilizzando i suoi sensori e le sue apparecchiature di comunicazione, un singolo F-35 potrebbe comandare un attacco composto da più di 20 UCAV armati.

Sistema di visualizzazione montato sul casco

L'F-35 non ha bisogno di essere fisicamente puntato verso il suo bersaglio perché le armi abbiano successo. I sensori possono tracciare e puntare un aereo verso qualsiasi orientamento, fornire le informazioni al pilota attraverso il casco e fornire al sensore di guida di un missile informazioni sufficienti. 
I tipi di missili recenti forniscono una capacità molto maggiore di colpire un bersaglio indipendentemente dall'orientamento di lancio, chiamata capacità "High Off-Boresight". I sensori utilizzano la radiofrequenza combinata e l'infrarosso (SAIRST) per tracciare continuamente gli aerei vicini, mentre il sistema di visualizzazione montato sul casco del pilota (HMDS) visualizza e seleziona i bersagli; il sistema del casco sostituisce il display a testa alta montato sul display dei caccia precedenti. Ogni casco costa oltre 400.000 $.
I sistemi dell'F-35 forniscono il tracking automatico dei bersagli permettendo     al pilota di mantenere l'attenzione sui bersagli, piuttosto che sui controlli del velivolo.
I problemi con il display montato sul casco di Vision Systems International hanno indotto Lockheed Martin-Elbit Systems a proporre nel 2011 proposte alternative basate su occhiali per la visione notturna Anvis-9.
BAE Systems è stata selezionata alla fine del 2011 per fornire un sistema alternativo. 
Il casco alternativo BAE Systems doveva includere tutte le caratteristiche del sistema VSI ma ciò avrebbe richiesto una riprogettazione della cabina di pilotaggio. Nel 2013 lo sviluppo del casco alternativo è stato interrotto a causa dei progressi del casco di base.
Nel 2011, Lockheed Martin-Elbit ha concesso a VSI un contratto per risolvere i problemi di vibrazione, visione notturna e visualizzazione dei sensori nel display montato sul casco con la sostituzione della telecamera ISIE-10 di Intevac giorno/notte con il nuovo modello ISIE-11 di Intevac.
Nell'ottobre 2012, Lockheed Martin-Elbit hanno confermato di aver compiuti. Nel 2013, nonostante i continui problemi con la visualizzazione del casco, il modello F-35B ha completato 19 atterraggi verticali notturni a bordo della USS Wasp in mare utilizzando il DAS al posto delle capacità di visione notturna incorporate nel casco, che offrono al meglio una visione 20/35.
Nell'ottobre 2013, lo sviluppo del casco alternativo è stato interrotto. L'attuale casco Gen 2 dovrebbe soddisfare i requisiti per dichiarare, nel luglio 2015, che l'F-35 ha ottenuto la capacità operativa iniziale. A partire dal 2016, con un basso tasso di produzione iniziale (LRIP) lotto 7, il programma introdurrà un casco Gen 3 che presenta una telecamera per la visione notturna migliorata, nuovi display a cristalli liquidi, allineamento automatico e altri miglioramenti software.

Manutenzione

Il concetto di manutenzione del programma prevede che ogni F-35 sia mantenuto in ogni impianto di manutenzione dell'F-35 e che tutte le parti dell'F-35 in tutte le basi siano globalmente monitorate e condivise secondo necessità. La comunanza tra le diverse varianti ha permesso all'USMC di creare il primo distaccamento di addestramento sul campo per applicare direttamente le lezioni dell'USAF alle operazioni di manutenzione dell'F-35. L'aereo è stato progettato per facilitare la manutenzione, con il 95% di tutte le parti sostituibili sul campo "una profondità" dove non deve essere rimosso altro per arrivare al pezzo in questione. Ad esempio, il sedile eiettabile può essere sostituito senza rimuovere il tettuccio, l'uso di attuatori elettroidrostatici a bassa manutenzione al posto dei sistemi idraulici e un rivestimento esterno in composito più duraturo dei precedenti.
Il Joint Program Office dell'F-35 ha dichiarato che il velivolo ha ricevuto buone recensioni da piloti e manutentori, suggerendo che sta funzionando meglio dei suoi predecessori in una simile fase di sviluppo, e che il tipo stealth si è dimostrato stabile dal punto di vista della manutenzione. Questo miglioramento segnalato è attribuito ad un migliore addestramento alla manutenzione, dato che i manutentori dell'F-35 hanno ricevuto un'istruzione molto più ampia in questa prima fase del programma rispetto all'F-22 Raptor. I rivestimenti stealth dell'F-35 sono molto più economici e duraturi rispetto a quelli utilizzati sull’F22 Raptor. I tempi di polimerizzazione per le riparazioni dei rivestimenti sono inferiori e molti dei dispositivi di fissaggio; i pannelli di accesso non sono rivestiti, riducendo ulteriormente il carico di lavoro per le squadre di manutenzione. Alcuni dei materiali radar-assorbenti dell'F-35 sono cotti in una pellicola composita, il che significa che la sua firma furtiva non è facilmente degradabile come quelle precedentemente utilizzate. 

(Fonti delle notizie: Web, Google, RID, Breakingdefense, defensenews, Wikipedia, You Tube)












































 

giovedì 9 dicembre 2021

Kuwait Air Force: arriva l’Eurofighter EF-2000 Typhoon


“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

Con una cerimonia svoltasi presso la sede di Leonardo a Caselle (TO) in forma rigorosamente ristretta, l’Aeronautica Militare del Kuwait ha ricevuto i primi 2 Eurofighter TYPHOON. 
L’agenzia kuwaitiana KUNA (Kuwait News Agency) ha anche reso pubblica una foto ufficiale relativa all’importante evento. 
I velivoli sono i primi 2 esemplari di una fornitura che comprende 28 TYPHOON, 22 in variante monoposto e 6 in variante biposto.




I 28 Eurofighter Typhoon del Kuwait saranno i più avanzati del tipo prodotto finora. Questo aereo da caccia multiruolo avrà un pacchetto di capacità in aggiunta ai precedenti programmi di potenziamento del Typhoon, come il radar Captor-E (E-scan) e diverse novità nel sistema d'arma che porterà l'Aeronautica del Kuwait al fronte -linea di tecnologia da combattimento. La consegna del velivolo inizierà nel 2020 e sarà completata nel 2023, rendendo il Kuwait l'ottavo cliente dell'aereo.







I 28 Eurofighter Typhoon del Kuwait saranno i più avanzati del tipo prodotto finora. 

Questo aereo da caccia multiruolo avrà un pacchetto di capacità in aggiunta ai precedenti programmi di potenziamento del Typhoon, come il radar Captor-E (E-scan) e diverse novità nel sistema d'arma che porterà l'Aeronautica del Kuwait al fronte -linea di tecnologia da combattimento. La consegna del velivolo inizierà nel 2020 e sarà completata nel 2023, rendendo il Kuwait l'ottavo cliente dell'aereo.
Il 5 aprile 2016 è stato firmato un contratto tra il Ministero della Difesa dello Stato del Kuwait e Leonardo (in qualità di Prime Contractor Organisation). Fu un vero successo del Sistema Paese Italia , dove politica, diplomazia, Forze Armate e industria lavorarono insieme, con notevoli benefici in termini di know-how e occupazione qualificata.

Il Programma Eurofighter: il ruolo di Leonardo

La condivisione dei lavori del complesso programma di partnership europea vede Leonardo responsabile della produzione di tutte le ali sinistre, complete di impianti installati; tutte le sezioni posteriori della fusoliera, progettate insieme a BAE Systems; alcuni piani mobili e tralicci subalari per i carichi; giunti ala-fusoliera e carenatura motore in titanio. Leonardo ha inoltre progettato e integrato importanti sistemi di bordo (gestione del negozio, navigazione, comandi di volo, display in cabina di pilotaggio) e ha lavorato all'integrazione con il velivolo di tutto il sistema d'arma e di propulsione.
Le parti che verranno poi assemblate per la realizzazione delle ali sono prodotte negli stabilimenti di Nola (Napoli) e Foggia della Divisione Aerostrutture e nello stabilimento di Venegono della Divisione Velivoli , mentre le sezioni posteriori sono prodotte presso lo stabilimento di Torino Caselle, che ospita l'ultima catena di montaggio di aerei completi.
La Divisione Airborne & Space Systems di Leonardo, con il supporto dei vari siti produttivi in Italia e nel Regno Unito, contribuisce in modo significativo allo sviluppo e alla produzione dell'avionica e dei principali sensori del velivolo. In particolare, il radar Captor-E (versione M-scan ed E-scan), prodotto dal consorzio Euroradar, il sistema PIRATA ad infrarossi passivi, prodotto dal consorzio EuroFirst (entrambi consorzio guidato da Leonardo) e il sistema di autoprotezione DASS (Defensive Aids Sub-System), e sistemi di comunicazione e IFF (Identification Friend or Foe). Infine, nello stabilimento di Venegono Superiore in provincia di Varese, Leonardo progetta e produce Equipaggiamento di supporto a terra (o AGE), come avviamento pneumatico e unità di alimentazione ausiliarie.

Produzione per il Kuwait
 
Dalla seconda metà del 2016 le attività produttive del Kuwait sono iniziate con la produzione di particolari, in linea con il piano di base e in alcuni casi anche in anticipo sui tempi previsti.
“ I pacchetti di capacità concessi al Kuwait ” ha affermato Giancarlo Mezzanatto, Vice Presidente Eurofighter Program Unit della Leonardo Aircraft Division “ comprenderanno l'integrazione di Storm Shadow e Brimstone e altre armi aria-superficie che arricchiscono le caratteristiche multiruolo del velivolo e migliorano il sistema d'arma. Inoltre, questa configurazione prevede l'integrazione di un nuovo pod designatore laser avanzato, l'introduzione di un pod di addestramento al combattimento, un ausilio alla navigazione potenziato e il già citato nuovo radar Captor-E con il suo avanzato riposizionamento dell'antenna ”.
Il radar Captor-E fornisce molta più potenza rispetto alla maggior parte dei sistemi concorrenti. In combinazione con l'ampia apertura del muso del caccia e la capacità unica di spostare l'antenna radar, il Typhoon ha un campo visivo di 200 gradi e i test di volo stanno confermando i vantaggi discriminanti che ciò porterà. "Questo nuovo radar è alla base dell'evoluzione attuale e futura delle capacità del Typhoon", ha aggiunto Mezzanatto.
L'accordo con il Kuwait MoD comprende anche servizi per operare al meglio la flotta Eurofighter come la progettazione e realizzazione delle infrastrutture presso la base aerea di Al-Salem in Kuwait e i primi servizi di supporto per tre anni (con opzione per un ulteriore cinque). Ciò include la fornitura di attrezzature e una suite di dispositivi di addestramento per stabilire un'unità di conversione operativa pilota in Kuwait. 

L'Eurofighter nella regione del Golfo

Questo successo in Kuwait è un'ulteriore conferma del ruolo crescente che il velivolo multiruolo prodotto dal Consorzio Eurofighter svolge nella Regione del Golfo. L'ultimo contratto firmato è quello siglato dal Qatar per 24 Typhoon, che vede il partner di Eurofighter BAE Systems agire come Prime Contractor. Inoltre, quest'anno sono state completate le consegne di tutte le 72 unità ordinate dall'Arabia Saudita e l' Oman ha già ricevuto metà dei 12 aerei previsti.

Descrizione

L'Eurofighter Typhoon è un caccia multiruolo della quarta generazione e mezza concepito come caccia intercettore e da superiorità aerea ma adattato, nel corso degli anni, anche a cacciabombardiere, ricognitore e aereo da supporto aereo ravvicinato.

Struttura

L'82% della cellula è realizzato in materiali compositi (principalmente in fibra di carbonio ma anche in fibra di vetro), mentre il 15% è realizzato in metalli e il restante 3% da altri materiali; l'impiego dei materiali è riassunto come segue:
  • compositi in fibra di carbonio: fusoliera, aerofreno, ali, flaperon interni, deriva,
  • compositi in fibra di vetro: radome, bordo d'entrata in prossimità della radice alare,
  • lega di alluminio-litio: flaperon esterni, timone, prese d'aria ventrali, presa d'aria sulla deriva, bordo d'ingresso della deriva,
  • alluminio stampato: struttura del cupolino,
  • lega di titanio: canard, slat, ugelli.
L'ampio utilizzo di materiali compositi riduce del 30% il peso delle strutture rispetto all'impiego di materiali tradizionali, conferendo all'aereo maggiore agilità grazie ad un alto rapporto spinta/peso e a un ridotto carico alare.
Sebbene non sia concepito come aereo stealth, alcune soluzioni adottare contribuiscono alla riduzione della sezione radar equivalente: ad esempio, i condotti a S che collegano le prese d'aria ai motori sono progettati per non esporre i motori al tracciamento radar e i materiali compositi, unitamente all'utilizzo di vernici radar-assorbenti, consentono di non disperdere parte dell'energia dei radar che investe l’aereo.

Aerodinamica

La configurazione canard contribuisce ad aumentare l'agilità del velivolo: questa configurazione, infatti, è instabile longitudinalmente ed è detta stabilità statica rilassata. La posizione molto avanzata delle alette canard rispetto alla posizione del baricentro ne aumenta il loro effetto come superfici di controllo e ne riduce la resistenza quando sono impiegate come trim. Data la configurazione dell'aereo, i canard generano una portanza che si somma a quella generata dalle ali, consentendo quindi di ridurre il carico alare. Questo effetto, la leggerezza della struttura e le funzioni delle alette canard, rendono l'Eurofighter estremamente maneggevole. La posizione dei canard influenza anche il flusso che investe l'ala: i vortici generati dalle alette investono l'ala consentendo al flusso d'aria di rimanere attaccato alla superficie alare anche ad alti angoli di incidenza e durante le manovre.
I requisiti di progettazione, che richiedevano un aereo in grado di volare a velocità supersoniche e in grado di manovrare a velocità basse e medie, hanno portato l'aereo ad avere un'ala a delta con angolo di freccia di 53°. Per quasi tutta la sua apertura, sul bordo d'attacco sono installati degli slat che si estendono a basse velocità o durante il volo manovrato per incrementare la superficie alare e dunque la portanza, oppure in volo transonico per ridurre la resistenza indotta. Questo utilizzo è giustificato dal fatto che, in volo supersonico, il centro di pressione si sposta verso il bordo d'uscita e durante la fase transonica si sposta ancora più indietro e la resistenza indotta subisce un notevole incremento: l'estensione degli slat allunga il profilo alare e contribuisce a non fare arretrare eccessivamente il centro di pressione.
Dietro il cockpit, nella parte superiore della fusoliera, è installato un aerofreno e nella parte posteriore della fusoliera è alloggiato un parafreno.
I tubi di Pitot sono collocati sotto il muso dell'aereo e sono orientabili liberamente per seguire il flusso d'aria che le investe e ridurre gli errori di misurazione.
La parete superiore della presa d'aria è fissa e presenta uno spazio con la fusoliera per rimuovere lo strato limite, caratterizzato da un basso livello di energia, mentre la parete inferiore è mobile per adattare la sezione di ingresso del condotto in base alle condizioni esterne: infatti, quando si vola a basse velocità, l'area di cattura dell'aria è maggiore rispetto alla sezione della presa d'aria, pertanto il flusso converge verso la presa d'aria venendo accelerato analogamente a quanto succede negli ugelli; al contrario, ad alte velocità di volo, l'area di cattura dell'aria è minore di quella della presa e il flusso viene rallentato già prima che entri nella presa. Altre situazioni in cui la presa d'aria aumenta la propria aerea sono quelle di volo ad alti angoli d'incidenza e per generare, in volo supersonico, un'onda d'urto obliqua seguita, nel caso il flusso sia ancora supersonico, da una normale all'ingresso della presa che porta il flusso a essere subsonico. Il flusso che scorre sulla parete del condotto a S a valle della presa d'aria viene rimosso e portato sulle ali, in prossimità della radice alare, dove contribuisce, grazie ai suoi vortici, a mantenere attaccato all'ala il flusso che vi scorre.




Motori

Ciascun Eurofighter è dotato di due turbofan a basso rapporto di bypass Eurojet EJ200, in grado di generare una spinta di 60 kN nominale e di 90 kN con il postbruciatore attivo. Gli EJ200 sono motori bialbero, hanno un peso a vuoto di 989 kg, un rapporto di bypass 0,4 e rapporto di compressione totale di 26; il compressore di bassa pressione è composto da tre stadi mentre quello di alta da cinque; sia la turbina di alta pressione sia quella di bassa pressione sono formate da uno stadio.
Il postbruciatore è avviato tramite metodo hot shot, che consiste nell'iniettare una quantità supplementare di combustibile nelle camere di combustione che sprigiona una fiamma che, per un istante molto breve, supera le turbine e innesca il combustibile immesso nel post-combustore. Il Typhoon è capace di volare in super-crociera, ovvero di volare a velocità supersoniche senza utilizzare il post-bruciatore.
L'ugello è a geometria variabile per garantire il massimo valore di spinta in qualunque condizione ambientale.
Il motore è controllato da un sistema digitale, integrato a partire dalla Tranche 2, denominato Digital Engine Control and Monitoring Unit (DECMU), che registra le informazioni provenienti da sensori installati nel motore e controlla i parametri del motore. Sugli aerei precedenti alla Tranche 2, le unità di controllo erano due distinte: la EMU (Engine Monitoring Unit) riceveva le informazioni dai sensori e la DECU (Digital Engine Control Unit) regolava i parametri del motore.
L'aereo è dotato di una Auxiliary Power Unit, che provvede ad avviare i motori e ad alimentare i sistemi quando le turbine non sono attive e il cui scarico si trova in prossimità della radice alare sinistra.
Il combustibile, la cui capacità è secretata, è immagazzinato in diversi serbatoi collocati nella fusoliera e nelle ali; per bilanciare la variazione del baricentro causata dal rilascio di carico bellico o consumo di combustibile, quest'ultimo viene pompato automaticamente attraverso i serbatoi per mantenere invariata la posizione del baricentro. La capacità di combustibile può essere aumentata grazie a tre serbatoi ausiliari, uno collocabile sotto la fusoliera e due sotto le ali, da 1 000 L disegnati per il volo supersonico. Il Typhoon è dotato di una sonda retraibile che gli consente di rifornirsi in volo. Nel 2014 BAe Systems ha provato in galleria del vento un modello di Typhoon equipaggiato con due serbatoi conformi da 1 500 L ciascuno.
Sui primi due prototipi era installata una versione modificata del RB199 Mk 104D.

Sistemi e impianti

L'Eurofighter dispone di due impianti idraulici ridondanti che lavorano a pressione di 272 atm (4 000 psi) che controllano gli attuatori delle superfici di controllo, il carrello, i freni, la parete mobile della presa d'aria, il cupolino, la sonda per il rifornimento e il cannone.
Sull'aereo sono presenti due impianti elettrici, uno principale e uno secondario: il primario, alimentato dai motori, produce sia corrente alternata sia corrente continua tramite raddrizzatori multipli, mentre il secondario, alimento da ram air turbine, viene attivato in caso di avaria parziale o totale al sistema primario.
L'aereo è comandato attraverso un sistema fly-by-wire quadruplo ed è controllato da un sistema di controllo di volo digitale (DFCS) che, oltre a impedire all'aereo di uscire dal suo inviluppo di volo, consente di riportarlo in volo orizzontale in caso di disorientamento del pilota ed è integrato con un sistema Automatic Low-Speed Recovery (ALSR), che impedisce all'aereo di raggiungere alti angoli di incidenza a basse velocità prima emettendo segnali visivi e acustici che avvisano il pilota e in seguito, se questo non interviene sui comandi, prendendo il controllo dell'aereo.
Ogni Eurofighter è dotato di uno Structure Health Monitoring System (SHMS), composto da dieci o sedici sensori che monitorano lo stato di usura delle strutture confrontando i dati raccolti con la vita utile.
La navigazione avviene tramite un sistema di navigazione inerziale Litton Italia LN-93EF e tramite un GPS militare.

Avionica

Il Typhoon dispone di un glass cockpit dotato di tre schermi detti multi-function displays (MFD) operabili tramite pulsanti o a voce (Direct Voice Input) che mostrano le condizioni del radar, informazioni sulla situational awareness, informazioni sui sistemi di bordo e immagini FLIR; inoltre, sono presenti un head-up display e un head-up panel collocato immediatamente sotto l'HUD. L'aeromobile è controllato tramite il sistema VTAS (Voice, Throttle And Stick), che è uno sviluppo dell'HOTAS e nel quale è integrato un Direct Voice Input. L'Eurofighter è il primo aereo militare a essere dotato di un DVI. L'Eurofighter è dotato di Instrument Landing System e di Enhanced Ground Proximity Warning System, derivato dal TERPROM Terrain Referenced Navigation (TRN) utilizzato sui Tornado.
Nel casco è integrato un Helmet-mounted display denominato Helmet Mounted Sighting System (HMSS), che consente al pilota di visualizzare riferimenti di volo e di localizzare bersagli.
L'Eurofighter è equipaggiato con un Multifunctional Information Distribution System (MIDS), che gli consente di scambiare dati di volo, obiettivi e posizioni con altri velivoli o piattaforme a terra attraverso la rete Link 16.


Praetorian DASS

La suite difensiva, nominata Praetorian Defensive Aids Sub-System (DASS) è progettata e prodotta dal consorzio EuroDASS ed è interamente integrata nel velivolo: ciò significa che non è necessario installare alcun dispositivo sui piloni esterni, beneficiandone sia dal punto di vista aerodinamico sia del carico bellico. L'intero sistema è controllato da un Defensive Aids Computer (DAC).
Electronic Support Measures: un sistema di antenne per la rilevazione di segnali radar potenzialmente ostili o di datalink è localizzato in appositi pod alle estremità alari consentendo una rilevazione a 360 gradi; il sistema è in grado di elaborare una mappa nella quale localizza la fonte del segnale e la identifica grazie a un database di frequenze ed è in grado di definire l'area in cui il sistema ostile è efficace, consentendo quindi al pilota di portarsi fuori dalla sua portata
Contromisure elettroniche: un sistema di contromisure elettroniche è ospitato nel pod all'estremità alare sinistra ed è in grado di disturbare più radar in volo e a terra contemporaneamente tramite l'utilizzo di una digital radio frequency memory e un generatore di segnali. Un'altra contromisura elettronica è il Towed Radar Decoy (TRD), un'esca trainata che viene dispiegata dal pod destro attraverso un cavo in kevlar lungo 100 metri contenente un collegamento in fibra ottica
Missile Approach Warning: un sistema di antenne posizionate in corrispondenza delle radici alari e una in coda sopra gli ugelli rintraccia missili lanciati contro il velivolo tramite un radar Doppler a impulsi, che è in grado di rilevare non solo armi a guida radar ma anche armi a guida laser. Una volta che il missile è intercettato, la sua posizione verrà mostrata su uno schermo del cockpit. Il MAW è in grado di attivare automaticamente il rilascio di chaff o flare. L'Eurofighter è dotato di due lanciatori di flare e due lanciatori di chaff che, oltre che dal MAW, sono controllati dal DAC o dal pilota; ciascun lanciatore contiene 160 flare o chaff.

Per incrementare la risposta a missili a guida laser, sugli Eurofighter britannici e sauditi sono installati quattro Laser Warning Receivers, due davanti ai canard e due in prossimità della deriva, che sono in grado di rilevare sistemi laser che puntano l'aereo e di identificarne la posizione.




Euroradar CAPTOR

L'Euroradar CAPTOR-C e il suo sviluppo CAPTOR-M (precedentemente CAPTOR-D) è un radar Doppler multimodale a impulsi a controllo meccanico sviluppato dal consorzio Euroradar; una versione Active electronically scanned array denominata CAPTOR-E è in fase di integrazione. Le funzioni del radar CAPTOR sono ricerca, acquisizione e tracciamento di bersagli e controllo del tiro aria-aria e aria-terra. Il CAPTOR-C, installato sugli aerei di Tranche 1, ha un raggio d'azione di circa 185 km ed è in grado di seguire contemporaneamente venti bersagli e di ingaggiarne sei. Il cliente di lancio del CAPTOR-E è stato il Kuwait nel 2015, seguito dal Qatar nel 2017; la Germania ha annunciato l'intenzione di integrare il CAPTOR-E sui propri Typhoon a partire dal 2022.


Eurofirst PIRATE

Il Passive Infra-Red Airborne Track Equipment (PIRATE) è il sistema FLIR/IRST dell'Eurofighter, sviluppato dal consorzio Eurofirst guidato da Selex ES e installato su tutti i velivoli a partire dalla Tranche 1 Block 5. Le immagini, quando utilizzato in funzione FLIR, sono riportate su uno schermo del cockpit, mentre le informazioni acquisite quando opera come IRST sono presentate sull'HUD, su uno schermo del cockpit o sul HMSS. Può essere utilizzato affiancandolo al radar o a sua volta affiancato da pod, come ad esempio il LITENING.

Sistemi d’arma

Il Typhoon è nato come caccia intercettore ma nel corso del suo sviluppo ha acquisito il ruolo di cacciabombardiere e aereo d'attacco al suolo, di conseguenza gli armamenti inizialmente previsti sono stati integrati da armamenti aria-superficie.
L'aereo è dotato di tredici piloni, cinque in fusoliera e otto alari, e di un cannone Mauser BK-27 da 27 mm; il Typhoon è compatibile con un'ampia gamma di carichi bellici per soddisfare le richieste dei vari utilizzatori.

Caratteristiche tecniche:
  • Apertura alare: 10,95 m 
  • lunghezza: 15,96 m
  • altezza: 5,28 m 
  • superficie alare: 50 mq 
  • peso a vuoto: 10.995 kg 
  • peso massimo al decollo: 23.000 kg 
  • impianto propulsivo: 2 turbofan Eurojet EJ200 da 60kN (13.490 lb) a secco e 90kN (20.000 lb) con postbruciatore 
  • velocità massima: 2 mach 
  • tangenza operativa: 13.000 m 
  • autonomia massima: 3.600 km 
  • raggio d’azione: oltre 1.350 km 
  • equipaggio: 1/2 piloti 
  • armamento: 1 cannone Mauser cal. 27 mm, fino a 6.500 kg di carichi esterni (serbatoi ausiliari, missili aria-aria a guida radar e infrarossa, ecc.).
(Fonti delle notizie: Web, Google, Leonardo, RID, Wikipedia, You Tube)


































 

L’Usaf desidera che i motori AETP a ciclo variabile vengano installati dal 2027 su tutti gli F-35A - La Pratt & Whitney spinge per l' XA101


“ SVPPBELLUM.BLOGSPOT.COM 
Si vis pacem para bellum “

Le modifiche che la società Pratt & Whitney propone all’Usaf ed alle forze alleate per il suo motore F135 potranno migliorare la spinta e l'efficienza e saranno certamente molto meno costose rispetto all’introduzione di nuovo propulsore sviluppato attraverso l'Adaptive Engine Transition Program.






Un funzionario della Pratt & Whitney per il programma F135, ha ribadito che la tecnologia AETP non è compatibile con l'F-35B del Corpo dei Marines. Ciò richiederebbe due diversi motori alternativi per l'F-35. L'intero sforzo potrebbe aggiungere fino a $ 40 miliardi nei 50 anni di vita del programma.
La versione della Camera del National Defense Authorization Act del 2022 richiederebbe all'F-35 Joint Program Office di perseguire una strategia per incorporare un motore AETP nella flotta F-35 a partire dal 2027. Uno degli obiettivi sarà quello di ridurre il costo dei singoli propulsori dell’F-35 creando un concorrente della Pratt & Whitney. La General Electric, che è all'avanguardia nella tecnologia AETP, è desiderosa di offrire il suo XA100 come alternativa. La Pratt, di proprietà di Raytheon Technologies, ha anch’essa sviluppato un motore AETP, l'XA101.
L’US Air Force ha da tempo investito nella tecnologia AETP per cercare di ottenere una più ampia autonomia e maggiore spinta da un motore compatibile con le dimensioni dell'F135. L'idea è quella di avere entrambi i vantaggi di risparmio di carburante dei turbofan utilizzati dai grandi aerei di linea con la compressione ad alta pressione necessaria per massimizzare la velocità per un caccia stealth, consentendo al motore di adattarsi al volo; il programma cerca di ottenere entrambi i vantaggi.
E’ stato altresì ribadito che l'esclusivo sistema di sollevamento a decollo corto e atterraggio verticale dell'F-35B non potrà ospitare i motori AETP. Per creare concorrenza con la GE, sarebbero necessarie due varianti del motore di ciascuna azienda, con riparazione parallela e catene di approvvigionamento, per la modica cifra di 40 miliardi di $.
L'ufficiale esecutivo del programma dell'USAF per i caccia e gli aerei avanzati è altrettanto scettico. Sebbene non abbia alcun ruolo nell'F-35, ha detto, "cercare di cambiare un propulsore in... un sistema in campo è estremamente complesso. … Devi pensare a quale potrebbe essere il ritorno sull'investimento.”
La Pratt & Whitney ha comunque presentato un paio di proposte per ammodernare il turbofan che equipaggia l’F-35. I piani migliorerebbero la spinta e l'autonomia di oltre il 10% ciascuno e darebbero all'F-35B un aumento del 5% nel sollevamento verticale e un miglioramento del 50% nella gestione termica. E’ notorio che il danno da calore è stato un problema con questi motori e anche una minore quantità di calore potrebbe potenzialmente migliorare le prestazioni stealth.
Il JPO ha ultimato lo studio "alla fine del 2020". Le proposte possono essere "sintonizzate" in base ai requisiti JPO e le modifiche potranno essere pronte per la produzione nel 2028. Una volta installate le modifiche ai motori, ci sarà anche "un certo margine" per una futura crescita.
Ci sarebbe un impatto industriale limitato, poiché l'Enhanced Engine Package, o EEP, potrebbe "entrare in produzione come retrofit... Quindi si basa sulla stessa identica infrastruttura e sulla stessa attuale rete di supporto”. "È molto ben compreso, ora, su tutta la linea" che l'F-35 ha bisogno di un aggiornamento del motore.… "Avremo bisogno di modernizzare il motore, si spera, una volta nel corso della vita del programma JSF". Le capacità del motore "devono essere commisurate alle capacità dell'aeromobile".
Sebbene non si sia potuto discutere dei miglioramenti del Block 4 che stanno contribuendo alla necessità di maggiori prestazioni, è chiaro che l'F-35 deve trasportare carichi e armi più pesanti e che i potenti sensori e l'elettronica necessitano di un raffreddamento aggiuntivo. Senza un motore dalle prestazioni migliori, "non possono usare il jet nel modo previsto", ha ribadito un funzionario Pratt& W., aggiungendo rapidamente che "non ci sono carenze" nelle prestazioni dell'F135 così com'è oggi. "Se non altro, il motore ha già prestazioni superiori alle specifiche originali... Si tratta di crescita".
Un vantaggio del motore AETP, secondo GE, è il suo terzo flusso d'aria, che secondo i suoi funzionari può essere utilizzato per aiutare a raffreddare l'elettronica dell'F-35.
Nel contempo, la Pratt & Whitney sta investendo milioni di $, per cercare di ridurre i costi di mantenimento del suo motore, un importante contributo agli elevati costi operativi dell’F-35: "L'accessibilità è la minaccia esistenziale per questo programma.” Ha continuato un funzionario P&W: "Abbiamo tolto il 50% dal costo unitario" dell'F135, ha detto. I miglioramenti ridurrebbero ulteriormente i costi, togliendo il 36% del costo per la visita iniziale, ha aggiunto. "Ecco dove arrivano le bollette", ha aggiunto, perché parti dell'hardware della sezione calda hanno raggiunto la fine della loro vita utile. "Sappiamo come ridurre i costi... Il nostro intero profilo commerciale è 'energia a ore'", ha osservato Latka.
In assenza di tali miglioramenti, i servizi dovranno rendere i motori più caldi per utilizzare le funzionalità del Block 4 e, sebbene possano gestirlo, "ciò significa che i motori vengono sottoposti a manutenzione" più frequentemente, aumentando i costi di mantenimento.
I miglioramenti proposti da Pratt & Whitney non avrebbero nulla a che fare con il raggiungimento dell'obiettivo dell’US Air Force di ridurre i costi operativi a $ 25.000 all'ora entro il 2025. Inoltre, gli aggiornamenti non sono specificamente destinati a creare più energia elettrica per i sistemi di bordo, ha affermato. Il JPO tiene una riunione con i partner, operatori e altre parti interessate dell'F-35 due volte all'anno per discutere i piani futuri e la propulsione sarà probabilmente all'ordine del giorno per la prossima riunione. "Dobbiamo chiarire quale sia il requisito", ha detto Latka. "E poi capiamo qual è la soluzione più conveniente una volta compreso quel requisito."
Latka non ha commentato l'idoneità dell'XA101 di Pratt & Whitney per l'F-35, tranne per il fatto che il motore era "sempre destinato... a essere un propulsore di sesta generazione" per i caccia di sesta generazione. L'F-35 è un caccia di quinta generazione. Un funzionario della Pratt & Whitney ha dichiarato di aver iniziato a testare l'XA101 questa primavera; la GE ha dichiarato di aver iniziato a testare il suo XA100 nel dicembre 2020. "C'è una quantità significativa di rischio che deriva da una tecnologia nuova di zecca e ciò richiederebbe un'enorme quantità di convalida da eseguire", ha affermato Latka. "Stiamo dicendo che l'AETP non è la soluzione giusta per l'F-35".

L’Usaf desidera che i motori AETP vengano installati dal 2027 su tutti gli F-35A

Il Congresso vuole nuovi motori nell'attuale e futura flotta di velivoli stealth F-35, con installazioni a partire dal 2027, secondo il National Defense Authorization Act del 2022. Si vuole un piano congiunto per l'acquisizione ed il sostegno entro due settimane dalla consegna al Congresso della richiesta di bilancio per l'anno fiscale 2023.
Si vuole anche un piano sul futuro della propulsione per i modelli F-35B e C, anch'essi da installare a partire dal 2027.
Il piano di mandato, che è incluso nella versione di compromesso del disegno di legge sulla politica di difesa fiscale 2022, richiede una "strategia di acquisizione competitiva, informata da considerazioni fiscali" da parte dell’US Air Force su come si equipaggeranno tutti gli F-35A, compresi quelli già in servizio —con i nuovi propulsori AETP. Il Congresso vuole un programma "che annoti le pietre miliari pertinenti e i requisiti di risorse fiscali annuali per l'attuazione di tale strategia".
Il tenente generale Eric T. Fick, direttore del Joint Program Office dell'F-35, ha affermato che se l’US Air Force dovesse installare un nuovo motore AETP sugli F-35A, sopporterebbe da sola i costi di sviluppo e produzione, poiché altri utenti del caccia con le varianti F-35B e C non potranno utilizzare a breve tale propulsore.






La General Electric e la Pratt & Whitney è notorio che stanno testando rispettivamente i loro prototipi XA-100 e XA-101, che sono stati sviluppati nell'ambito dell'AETP. I nuovi motori forniscono sostanziali aumenti delle prestazioni, con un aumento del 30% dell'autonomia o del 40% della persistenza, reso possibile da una riduzione del 25% del consumo di carburante. Entrambi i motori fornirebbero anche miglioramenti a due cifre in accelerazione.
I miglioramenti estenderebbero l’autonomia degli F-35 e ridurrebbero la loro dipendenza dal rifornimento in volo, in particolare all'interno o vicino allo spazio aereo conteso.
Entrambe le società hanno affermato di poter soddisfare l'interesse precedentemente espresso dal Congresso per l'avvio di un retrofit AETP sull'F-35 intorno al 2027, sebbene i funzionari di entrambe le società abbiano descritto tale calendario come ambizioso.

E gli F-35 della US NAVY, del Corpo dei Marines e degli alleati?

Il National Defense Authorization Act impone un rapporto simile del Segretario della Marina, "su come integrerà un nuovo sistema di propulsione nei modelli F-35B e C. Sia GE che Pratt hanno detto che l'ugello posteriore rotante verso il basso dell'F-35B rende i motori AETP incompatibili con quell'aereo, a causa del suo sistema di bypass del terzo flusso d’aria. Tuttavia, tutte le varianti dell'F-35 avranno bisogno di un sistema di propulsione migliorato per sfruttare appieno gli aggiornamenti di capacità dell'F-35 Block 4 ora in fase di sviluppo. Mentre la Us Navy potrebbe potenzialmente utilizzare un AETP con pesanti modifiche - anche il motore che il gancio di arresto del vettore del modello C dovranno essere riconfigurati - la soluzione più probabile sarebbe l'Enhanced Engine Package (EEP), che la Pratt ha proposto per il proprio Motore F135 che ora alimenta l'intera flotta di F-35.
La NDAA afferma che il "sistema di propulsione avanzato" che il congresso vuole nei modelli F-35B e C "significa un derivato" dell'AETP o "un derivato di un sistema di propulsione precedentemente sviluppato per l'aereo F-35".
Come parte del rapporto della Marina, il Congresso vuole sapere quanto un nuovo motore migliorerebbe: 
  • l'efficacia del combattimento, 
  • i costi di mantenimento" degli F-35B e C, compresi eventuali effetti derivanti da A) aumento della spinta, 
  • efficienza del carburante, 
  • capacità termica e generazione elettrica e B), 
  • miglioramenti in accelerazione, 
  • velocità, 
  • autonomia, 
  • efficacia complessiva della missione.

Il rapporto della Us Navy dovrà anche fornire una valutazione di come un sistema di propulsione avanzato potrebbe ridurre i requisiti e qualsiasi "beneficio di costo complessivo" da "riduzione di acquisizione e sostentamento".
Come l'USAF, anche la US NAVY deve fornire una strategia di acquisizione competitiva, nonché "considerazione dei limiti tecnici" di tale impresa.
Il Congresso non ha specificato se le strategie di acquisizione competitiva da valutare includano un approccio in cui il vincitore prende tutto, o se prenderà in considerazione acquisti competitivi annuali, come è stato fatto durante la "Grande Guerra delle Macchine" degli anni '80. Con questo approccio, GE e Pratt si contendevano la parte del leone nella produzione di motori per l'F-15 e l'F-16 in un dato anno, con il "perdente" che riceveva almeno un po' di lavoro. Il vantaggio era la concorrenza costante e il miglioramento del prodotto, con il sottoprodotto del mantenimento di due società in grado di produrre motori da combattimento per la capacità di aumento in tempo di guerra.
La General Electric ha progettato il motore F-136 per l'F-35, poiché il Pentagono prevedeva di condurre una simile competizione annuale di motori, ma l'ex segretario alla Difesa Robert Gates ha interrotto la competizione, affermando che era inutile e dispendioso. Il JPO stima che potrebbero essere prodotti più di 5.000 F-35, inclusi clienti statunitensi, partner alleati ed export.

Il Pratt & Whitney XA101 è un turbo-fan a ciclo adattivo a triplice flusso sviluppato dalla Pratt & Whitney per il Lockheed Martin F-35 Lightning e costituisce la base per il sistema di propulsione per il programma di caccia di sesta generazione dell’USAF e della US NAVY, Next Generation Air Dominio (NGAD).
Il design del ciclo adattivo a tre flussi può dirigere l'aria al terzo flusso di bypass per una maggiore efficienza del carburante e raffreddamento o ai flussi del nucleo e della ventola per una spinta e prestazioni aggiuntive. Si prevede che il motore della classe di spinta da 45.000 lbf (200 kN) sarà significativamente più potente ed efficiente rispetto ai turbo-fan a basso livello di bypass attualmente operativi.

Sviluppo

L’US Air Force e la US NAVY hanno iniziato a perseguire il concetto di motore a ciclo adattivo nel 2007 con il programma Adaptive Versatile Engine Technology (ADVENT), una parte del più ampio programma Versatile Affordable Advanced Turbine Engines (VAATE). Pur non essendo coinvolta con l’ADVENT, la Pratt & Whitney è stata selezionata insieme alla General Electric per il programma Adaptive Engine Technology Demonstrator (AETD) che è seguito nel 2012; questo programma ha continuato a far maturare la tecnologia, con test eseguiti utilizzando motori dimostrativi. Il passo successivo, l'Adaptive Engine Transition Program (AETP), è stato lanciato nel 2016 per sviluppare motori adattivi per la propulsione dei caccia di sesta generazione, nonché il potenziale re-engineering dell'F-35 dall’attuale turbofan F135. Il dimostratore della General Electric è stato designato XA100 e il motore P&W è stato designato XA101. L'obiettivo dell'AETP era quello di dimostrare un'efficienza del carburante migliorata del 25%, una spinta aggiuntiva del 10% e una migliore gestione termica.  Nel 2017, la Pratt & Whitney ha testato con successo una ventola adattiva a tre flussi con un nucleo F135 e ha considerato l'XA101 come "Opzione di crescita 2.0" nel suo piano di sviluppo a lungo termine per l'F135. Ulteriori aggiudicazioni e modifiche del contratto dall'Air Force Life Cycle Management Center(AFLCMC) nel 2018 hanno aumentato l'attenzione sulla rimotorizzazione dell'F-35; ci sono state anche indagini sull'applicazione della tecnologia negli aggiornamenti per i sistemi di propulsione F-15, F-16 e F-22.  Nel giugno 2018, la Pratt & Whitney ha cambiato il suo piano di sviluppo per l'F135 ed ha invece offerto una ventola adattiva a tre flussi come opzione di crescita 2.0 separata dall'XA101, che avrebbe invece un nuovo nucleo motore.  Nel 2020, il piano di sviluppo dell'F135 è passato da "Opzioni di crescita" a "Pacchetti di miglioramento del motore" (EEP), mentre l'XA101 a triplice flusso è un nuovo motore con potenziale re-engineering per l'F-35A. I test a terra dell'XA101 sono iniziati nel settembre 2021.

Progettazione

L'XA101 è un motore a ciclo adattivo a triplice flusso d’aria che può regolare il rapporto di bypass e la pressione della ventola per aumentare l'efficienza del carburante o la spinta, a seconda dello scenario. Lo fa impiegando un terzo flusso di bypass attorno all'intero motore, con la capacità di modulare la porzione di flusso d'aria nel nucleo del motore o attraverso questo terzo flusso, per aumentare il risparmio di carburante e agire come dissipatore di calore per il raffreddamento. Questa capacità consente un maggiore utilizzo della porzione ad alta velocità e bassa quota del regime di volo dell'F-35. L'aumento del raffreddamento e della generazione di energia consente anche il potenziale impiego di armi a energia diretta in futuro. Quando è necessaria una spinta aggiuntiva, l'aria dal terzo flusso può essere diretta nel nucleo e nei flussi del FAN per aumentare le prestazioni.

Applicazioni:
  • Lockheed Martin F-35 (pianificato);
  • Next Generation Air Dominance (NGAD) (pianificato, derivato).

Specifiche (XA101)

Caratteristiche generali:
  • Tipo: turbofan a ciclo adattivo a triplice flusso;
  • Spinta max: Classe 45.000 lbf (200 kN) (con postcombustore);
  • Rapporto peso/potenza :=.
















(Fonti delle notizie: Web, Google, airforcemag, Wikipedia, You Tube)