giovedì 13 agosto 2020

Il Sukhoi Su-57 - Сухой Су-57, codice NATO "Felon"


Il Su-57 è stato originariamente progettato come un caccia da combattimento versatile in grado di svolgere molteplici ruoli. L'elevata manovrabilità non è il requisito fondamentale per i jet prodotti dai paesi occidentali che si stanno concentrando su combattimenti a lungo raggio. I russi, invece, si stanno concentrando su entrambi gli aspetti.
Il responsabile della Sukhoi ha anche confermato che la manovrabilità del caccia Su-57 è stata apprezzata anche da alcuni comandanti militari occidentali, come l'ex generale tenente dell'aeronautica statunitense Dave Deptula, che ha elogiato la raffinata aerodinamica del jet e la spinta vettoriale dei suoi motori. Circa 76 Su-57 dovrebbero essere consegnati all'Aeronautica Russa entro il 2028. Fino ad ora sono stati prodotti un totale di 13 caccia.


Il Sukhoi Su-57 (Сухой Су-57 in caratteri cirillici, nome in codice NATO "Felon") è un prototipo di caccia multiruolo monoposto di 5ª generazione con caratteristiche stealth sviluppato da Sukhoi per l'aeronautica militare russa.
Noto anche come PAK FA (in russo: Перспективный авиационный комплекс фронтовой авиации, Perspektivnyi Aviatsionnyi Kompleks Frontovoi Aviatsyi, cioè Futuro Sistema Aereo di Prima Linea Aerea), o anche come T-50, l'aeromobile è stato ufficialmente denominato "Su-57" nell'agosto del 2017.



Sviluppo

Sono attualmente sviluppate due versioni: la monoposto, designata come Su-57 e biposto, designata come Fifth Generation Fighter Aircraft (FGFA), al cui sviluppo partecipava inizialmente anche l'India. Tale velivolo avrà il compito di sostituire i MiG-29 Fulcrum e Su-27 Flanker e dovrà necessariamente confrontarsi con i rivali statunitensi F-22, F-35 e cinesi Chengdu J-20.
Lo sviluppo di questo velivolo è curato da un consorzio capeggiato dalla Sukhoi e la realizzazione avviene insieme con la Novosibirsk Aircraft Production Association (NAPO) e la Komsomolsk-na-Amur Aircraft Production Association (KnAAPO).
La base area presso la quale vengono effettuati i test di sviluppo è Akhtubinsk, nelle vicinanze della città di Volgograd nel sud della Russia.
Il Su-57 dovrebbe entrare in servizio con quasi tre anni di ritardo rispetto alle previsioni. Secondo le stime russe i Su-57 dovrebbero essere costruiti in un numero totale compreso tra 800 ed i 1000 esemplari; l’aeronautica russa avrebbe necessità di dotarsi di almeno 450 Su-57 entro il 2040; ma, vista la difficile situazione economica del paese e l'elevatissimo prezzo dei caccia di 5ª generazione, difficilmente si raggiungeranno tali cifre.
Alcuni prototipi del Su-57 sono stati completati.
Il primo prototipo ha effettuato con successo il volo inaugurale della durata di 47 minuti il 29 gennaio 2010, dalla base della Komsomolsk-on-Amur Aircraft Production Association nell'aeroporto Dzemgi, con il famoso pilota Sergey Bogdan alla guida. Il secondo prototipo ha volato per la prima volta il 3 marzo del 2011. I primi due prototipi erano privi di radar e sistemi d'armamento. Il terzo, dotato di un nuovo radar AESA, ha volato per la prima volta il 22 novembre 2011. Il quarto prototipo ha volato per la prima volta il 12 dicembre 2012. Il quinto prototipo ha volato il 27 ottobre 2013 pilotato da Yury Vashchuk, Sukhoi Chief Pilot ed eroe della Federazione Russa.
Come dichiarato dalla casa produttrice, il nono prototipo dovrebbe essere praticamente uguale ad un aereo di produzione di serie.
Gli undici prototipi costruiti sino ad ora hanno superato i test senza particolari problemi (alla fine del 2013 si è conclusa la fase preliminare dei test, nel 2014 sono cominciati i test statali).
A fine febbraio 2018 la Russia ha inviato 4 prototipi del SU-57 nella base russa in Siria di Hmeimim per probabili test operativi.
Il 15 maggio 2019, Vladimir Putin ha annunciato l'acquisto da parte del Ministero della Difesa della Russia di 76 SU-57, che dovrebbero entrare in servizio con tre gruppi aerei entro il 2028. Il valore del contratto è stimato in 170 miliardi di rubli - circa trentacinque milioni di dollari di valore per singolo esemplare - il che lo rende il più grande nella storia dell'aviazione russa e garantisce il pieno utilizzo della capacità della fabbrica di aeromobili di Komsomol'sk-na-Amure per almeno un decennio. Il giorno 24 dicembre del 2019, durante un volo di collaudo, si è registrato il primo incidente in volo che ha coinvolto un Su-57. Secondo le notizie fornite dalla TASS il velivolo ha avuto problemi ai propri "sistemi di controllo" ed è entrato in vite ad un'altitudine di circa 26 000 piedi (7900 metri); dopo una discesa di circa 4000 m il pilota ha deciso di eiettarsi, salvandosi la vita.



Tecnica

Motori

Il T-50 di pre-produzione e i lotti di produzione iniziale del Su-57 utilizzeranno una coppia di NPO Saturn izdeliye 117, o AL-41F1. Il motore è una variante altamente migliorata e potenziata dell'AL-31 che alimenta la famiglia di aerei Su-27 e produce 93,1  kN (21.000  lbf ) di spinta a secco, 147,1 kN (33.067 lbf) di spinta nel postcombustore, e ha un peso a secco di circa 1.600 kg (3.530 lb). I motori hanno il controllo completo del motore digitale (FADEC) e sono integrati nel sistema di controllo del volo per facilitare la manovrabilità. L'AL-41F1 è strettamente correlato al motore Saturn izdeliye 117S, o AL-41F1S, utilizzato dal Su-35S, con il sistema di controllo del motore separato di quest'ultimo che rappresenta la differenza fondamentale. 
I motori AL-41F1 incorporano ugelli  vettoriali (TVC) i cui assi di rotazione sono inclinati ciascuno di un angolo, simile alla disposizione degli ugelli del Su-35S. Questa configurazione consente al velivolo di produrre momenti di spinta vettoriale su tutti e tre gli assi di rotazione, beccheggio, imbardata e rollio. Gli stessi ugelli di spinta vettoriale operano su un solo piano; l'inclinazione consente al velivolo di produrre sia rollio che imbardata spostando diversamente ciascun ugello del motore. Le prese d’aria del motore incorporano rampe di aspirazione variabili per una maggiore efficienza supersonica e schermi retraibili per impedire l'ingestione di detriti di corpi estranei che potrebbero causare danni ai motori. L'AL-41F1 deve incorporare anche misure di riduzione degli infrarossi e RCS.  Nel 2014, l'aeronautica militare indiana ha espresso apertamente preoccupazione per l'affidabilità e le prestazioni dell'AL-41F1; durante il Moscow Air Show 2011, un T-50 ha subito uno stallo del compressore che ha costretto l'aereo ad interrompere il decollo. 
I caccia di produzione dalla metà del 2020 in poi saranno equipaggiati con un motore più potente noto come izdeliye 30.  Rispetto all'AL-41F1, il nuovo propulsore avrà maggiore spinta, costi inferiori, migliore efficienza del carburante, e meno parti mobili; il motore è inoltre dotato di IGV in plastica in fibra di vetro per ridurre la firma radar del velivolo. Queste caratteristiche, insieme a una maggiore affidabilità e costi di manutenzione inferiori, miglioreranno le prestazioni e l'affidabilità dell'aeromobile.  L'izdeliye 30 è progettato per avere un peso specifico inferiore del 30% rispetto al suo predecessore AL-41F1. Si stima che il nuovo motore produca circa 107 kN (24.054 lbf) di spinta a secco e 176 kN (39.556 lbf) nel postbruciatore.  Lo sviluppo su vasta scala è iniziato nel 2011 e il compressore del motore ha iniziato i test al banco nel dicembre 2014.  I primi motori di prova sono stati completati nel 2016. Il nuovo propulsore è progettato per sostituire l'AL-41F1 con modifiche minime alla cellula. 
Il 5 dicembre 2017, il secondo prototipo del Su-57 (T-50-2, bort n. 052), equipaggiato con il motore izdeliye 30, è decollato per la prima volta dal Gromov Flight Research Institute. Il volo di prova di 17 minuti è stato effettuato da Sergei Bogdan, capo collaudatore di Sukhoi.  Il motore izdeliye 30 è stato installato nella posizione del motore di babordo mentre l'AL-41F1 è rimasto a tribordo. L'izdeliye 30 presenta un nuovo ugello con alette dentellate rispetto a quelli convenzionali dell'ugello AL-41F1. L'8 febbraio 2018, il vice ministro della Difesa russo Yury Borisov ha dichiarato che le prestazioni del nuovo motore erano "...difficili da giudicare, perché tutto ciò che abbiamo avuto è questo volo. Tutto sembra normale, ma ...molti voli devono essere di regola, tali prove richiedono 2-3 anni". Entro il 6 dicembre 2019, Rostec ha condotto 16 voli del motore Izdeliye 30 per verificarne le caratteristiche in varie modalità di volo, in particolare, il funzionamento dell'ugello vettoriale e del sistema dell'olio a sovraccarichi negativi. 



Armamento

Il prototipo del T-50 ha due alloggiamenti per armi interne principali in tandem ciascuno lungo circa 4,6 m (15,1 piedi) e largo 1,0 m (3,3 piedi) e due piccoli alloggiamenti per armi a sezione triangolare che sporgono sotto la fusoliera vicino alla radice dell'ala.  Il trasporto interno delle armi preserva la furtività dell'aereo e riduce significativamente la resistenza aerodinamica, preservando così le prestazioni cinematiche rispetto alle prestazioni con i carichi esterni. Si prevede che l'elevata velocità di crociera del Su-57 aumenterà sostanzialmente l'efficacia delle armi rispetto ai suoi predecessori. Vympel sta sviluppando due lanciatori di espulsione per le baie principali: l'UVKU-50L per missili che pesano fino a 300 kg (660 libbre) e l'UVKU-50U per ordigni che pesano fino a 700 kg (1.500 libbre).
Per il combattimento aria-aria, il Su-57 dovrebbe trasportare quattro missili aria-aria a lungo raggio nei suoi due alloggiamenti per le armi principali e due missili a corto raggio negli alloggiamenti delle armi alla radice delle ali.  Il missile primario a medio raggio utilizza il radar attivo K-77M (izdeliye 180), una variante R-77 potenziata con cercatore AESA e pinne posteriori convenzionali. Il missile a corto raggio è l'infrarosso-homing ("ricerca di calore") K-74M2 (izdeliye 760), una variante dell’R-74 potenziata con sezione trasversale ridotta per il trasporto interno. Un missile a corto raggio dal design pulito e designato K-MD (izdeliye300) è in fase di sviluppo per sostituire eventualmente il K-74M2. Per applicazioni a distanza più lunga, è possibile trasportare quattro grandi missili izdeliye 810 lanciabili oltre il raggio visivo, con due in ciascun vano armi principale. Secondo quanto riferito, il caccia sarà anche in grado di trasportare il missile ipersonico R-37M a lungo raggio.
Gli alloggiamenti principali possono anche ospitare missili aria-terra come il Kh-38M , nonché bombe guidate di precisione KAB-500 da 250 kg (550 lb) o 500 kg (1.100 lb) KAB-500. L'aereo dovrebbe anche trasportare varianti ulteriormente sviluppate e modificate del missile anti-nave Kh-35 UE (AS-20 "Kayak") e del missile anti-radiazioni Kh-58 UShK (AS-11 "Kilter"). Per le missioni che non richiedono la furtività, il Su-57 può trasportare provviste sui suoi sei punti di fissaggio esterni. Il capo della BrahMos Aerospace A. Sivathanu Pillai ha dichiarato che c'era la possibilità dell'installazione di BrahMos - missile da crociera supersonico - sul derivato del Su-57 FGFA. Un nuovo missile ipersonico con caratteristiche simili al Kh-47M2 Kinzhal ALBM è in fase di sviluppo anche per il Su-57. Il missile deve avere una sistemazione all'interno del corpo e dimensioni più piccole per consentirne il trasporto all'interno delle principali baie centrali delle armi del Su-57. Un nuovo missile sembrava essere un derivato dell'R-77, è stato mostrato durante il 70° anniversario della Vympel il 18 novembre 2019. La lunghezza del nuovo missile era circa i 2/3 dei 12 piedi dell'R-77, e si pensava che fosse progettato per adattarsi all'interno delle baie delle radici delle ali triangolari sotto le ali del Su-57.
Il velivolo monta internamente un cannone 9A1-4071K (GSH-30-1) da 30 millimetri vicino alla radice LEVCON destra. Il cannone è il più leggero della classe da 30 mm con un peso di 50 kg e può sparare fino a 1.800 colpi al minuto, traccianti a frammentazione esplosiva, incendiari e perforanti ed è efficace anche contro bersagli terrestri, marittimi e aerei leggermente corazzati fino a 800 m per bersagli aerei e 1.800 m per bersagli terrestri. Il cannone è dotato di un sistema di raffreddamento ad acqua autonomo, dove l'acqua all'interno della camicia della canna viene vaporizzata durante il funzionamento.



Cabina di pilotaggio

Il Su-57 ha un cockpit con due display LCD multifunzionali principali da 38 cm (15 pollici) simili alla disposizione del Su-35S. Attorno all'abitacolo sono posizionati tre display del pannello di controllo più piccoli. La cabina di pilotaggio ha un head-up display (HUD) grandangolare (30° per 22°). I controlli principali sono il joystick e una coppia di acceleratori. L'aereo utilizza un tettuccio in due pezzi, con la sezione di poppa scorrevole in avanti e bloccata in posizione: è trattato con rivestimenti speciali per aumentare la furtività dell'aereo.
Il Su-57 impiega il seggiolino eiettabile NPP Zvezda K-36D-5 e il sistema di supporto vitale SOZhE-50, che comprende il sistema anti-g e generatore di ossigeno. Il sistema di generazione di ossigeno da 30 kg (66 lb) fornirà al pilota una fornitura illimitata. Il sistema di supporto vitale consentirà ai piloti di eseguire manovre da 9 g per un massimo di 30 secondi alla volta, e la nuova tuta a pressione parziale VKK-17 consentirà l'espulsione sicura ad altitudini fino a 23.000 m (75.000 ft): il sistema sarebbe nella fase finale del test. Ed i piloti collaudatori starebbero già volando con questa apparecchiatura. L'equipaggiamento del pilota consisteva anche in un casco digitale collegato alle videocamere di bordo per migliorare la consapevolezza della situazione del pilota. Presenta anche il sistema di rilevamento del movimento per consentire il targeting automatico a differenza dei precedenti caccia sovietici. C'è anche un kit di sopravvivenza composto da padella, antenna, specchio di segnalazione, 16 cubetti di zucchero, cassetta di pronto soccorso, due scatole di fiammiferi, una pistola di segnalazione con cariche, bottiglia d'acqua da 1,5 litri, coltello machete, radiofaro e Radio portatile. Il pilota potrebbe utilizzare il contenitore del kit di sopravvivenza con un battellino o un sacco a pelo impermeabile, se necessario. 



Avionica

I principali sistemi avionici sono il sistema elettronico radio integrato multifunzionale Sh-121 (russo: Ш-121) (MIRES) e il sistema elettro-ottico 101KS "Atoll" (russo: 101КС "Атолл").
L'Sh-121 è composto dal sistema radar Byelka N036 e dal sistema di contromisure elettroniche L402 Himalaya. Sviluppato da Tikhomirov NIIP Institute, l'N036 è costituito dal naso principale montato N036-1-01 banda X attivo matrice scansione elettronica radar (AESA), o attiva radar phased array (Russo: Активная фазированная антенная решётка, Aktivnaya Fazirovannaya Antennaya Reshotka, Russo: АФАР, AFAR) di nomenclatura russa, con 1.552 moduli T / R e due laterali dall'aspettoN036B-1-01 Radar AESA in banda X con 358 moduli T / R incorporati nelle guance della fusoliera anteriore per una maggiore copertura angolare. Inoltre, il radar laterale potrebbe consentire al Su-57 di impiegare tattiche di raggio estremo (il combattente si gira di 90 gradi / perpendicolare all'array radar doppler a impulsi ostili, in modo che il radar del nemico non lo rilevi / lo interpreti erroneamente come un oggetto non in movimento) mentre è ancora in grado di guidare il proprio missile. La suite ha anche due ricetrasmettitori a banda L N036L-1-01 sulle estensioni del bordo d'attacco dell'ala che non vengono utilizzati solo per gestire il sistema di identificazione amico o nemico N036Sh Pokosnik (Razziatore) ma anche per la guerra elettronica. L'elaborazione da parte del computer dei segnali in banda X e L da parte del computer e del processore N036UVS consente di migliorare notevolmente le informazioni del sistema.
Nel 2012 sono iniziati i test a terra del radar N036 sul terzo prototipo di velivolo T-50. La suite di contromisure elettroniche (ECM) dell'Himalaya L402 realizzata dal Kaluga Research Radio Engineering Institute utilizza sia i propri array che quelli del sistema radar N036. Uno dei suoi array è montato nel pod dorsale tra i due motori. Il sistema è stato montato sull'aereo nel 2014. La comunicazione radiotelefonica e lo scambio di dati crittografati tra vari velivoli e anche i centri di comando (terrestri, marittimi e aerei) saranno forniti dal sistema S-111, sviluppato di Polyot. Il sistema sarà basato su un concetto modulare e potrebbe essere installato non solo sul Su-57, ma anche su vari aerei, elicotteri e droni. "Il suo raggio d'azione effettivo è fino a 1.500 chilometri (930 mi)" ha detto un portavoce. "L'affidabilità del sistema è garantita dalla ridondanza multipla delle principali funzioni e da soluzioni tecniche all'avanguardia, oltre che da un'ampia gamma di canali radio".
Il sistema elettro-ottico UOMZ ' 101KS "Atoll" era costituito da:
La torretta di ricerca e traccia a infrarossi 101KS-V montata sul lato di tribordo davanti al pozzetto. Questo sensore può rilevare, identificare e tracciare simultaneamente più bersagli in volo.
Il sistema di contromisure direzionali a infrarossi 101KS-O ha sensori alloggiati in torrette montate sul dorso e sulla fusoliera anteriore sotto l'abitacolo e utilizza contromisure modulate basate sul laser per confondere o distruggere il meccanismo di tracciamento dei missili a guida IR. A giudicare dalla sua posizione, il sistema è presumibilmente inteso non solo come auto-protezione contro MANPADS ma anche come missile aria-aria. A questo proposito, il Su-57 potrebbe essere una sorta di pioniere, mentre capacità DIRCM simili non sono state trasferite alle ultime generazioni di aerei da caccia occidentali ad alta quota. 
I sensori di avvertimento di avvicinamento missilistico ultravioletto 101KS-U (MAWS) vengono utilizzati contro i missili homing a infrarossi. MAWS, utilizzando la tecnologia ultravioletta, può funzionare in tutte le condizioni atmosferiche e non sarà influenzato dal disordine solare. Fornisce buone informazioni direzionali del missile in arrivo per un buon processo decisionale di distribuzione di esche, manovre e per mettere in azione il sistema DIRCM. 
Il 101KS-P, una termocamera ad alta risoluzione, fornisce pilotaggio e atterraggio a bassa quota in condizioni notturne. È installato davanti ai compartimenti missilistici a corto raggio e non è usato per scopi di mira, ma per efficienti voli a bassa quota e operazioni di atterraggio notturno.
Il 101KS-N opzionale è un pod di navigazione e targeting esterno. Avrà una funzione simile ai POD avanzati AN / AAQ28 Litening e AN / AAQ33 Sniper delle forze armate statunitensi e sarà montato sotto la presa d'aria.
Nel 2014, Concern Radio-Electronic Technologies (KRET) ha annunciato di aver creato un sistema di navigazione inerziale con strap-down BINS-SP2M aggiornato, sviluppato dalle sue due imprese, Moscow Institute of Electromechanics and Automatics (MIEA) e Ramensky Instrument Engineering Plant (RPZ). Costruito sulla base di giroscopi laser e accelerometri al quarzo, elabora autonomamente le informazioni di navigazione e di volo, determina i parametri di posizione e movimento in assenza di navigazione satellitare e può integrarsi con GLONASS. È garantito per durare almeno 10.000 ore e può essere utilizzato universalmente, non solo in aereo, ma anche in apparecchiature marine e terrestri. Nel 2016, KRET ha annunciato che sta sviluppando un sistema di elaborazione video multifunzionale chiamato "Okhotnik" (Hunter) per aumentare il raggio di rilevamento dei bersagli del Su-57 e per migliorare il rilevamento e il tracciamento automatici dei bersagli. 
Nell'aprile 2017, l' UAC ha annunciato che una nuova suite avionica integrata di nuova generazione ha avviato i test in volo. Secondo Dmitry Gribov, capo progettista del nuovo complesso, la nuova suite avionica, chiamata ИМА БК, l'acronimo russo di Интегрированная модульная авионика боевого комплека, sostituirà i sistemi di combattimento integrati nel 2004 chiamato Багет (Baguette) utilizzato sul Su-35. Il sistema ancora in fase di sviluppo ha più di 4 milioni di righe di codice. L'IMA BK utilizza microprocessori multi-core russi e un nuovo sistema operativo in tempo reale chiamato "BagrOS-4000". La nuova suite avionica si avvale anche di canali in fibra ottica con un throughput di oltre 8 Gbit / s, che è fino a 100 Mbit / sec per i tradizionali fili di rame. La nuova suite avionica integrata IMA BK è progettata per rilevare, identificare e tracciare automaticamente gli obiettivi più pericolosi e offrire al pilota la migliore soluzione per ingaggiare un nemico. Il nuovo sistema prenderà il controllo di quasi tutti i sensori chiave del velivolo - radar, navigazione e comunicazione che nei velivoli precedenti erano controllati da computer separati - quindi svolgerà simultaneamente il ruolo di pilota elettronico, navigatore elettronico e ingegnere di volo elettronico.
Un sistema di monitoraggio che imita un organismo vivente o sistema nervoso consentirà valutazione in tempo reale delle condizioni del velivolo e prevedere il restante 'vita' delle parti composite del velivolo combinando fibre ottiche, con sensibilità alle sollecitazioni meccaniche, con la rete del velivolo sistema. Le informazioni sulle condizioni del velivolo verranno trasmesse tramite raggio laser attraverso la fibra ottica intessuta nella struttura. Ridurrà i costi di manutenzione del velivolo e consentirà la riparazione preventiva delle parti, migliorando così la sicurezza del volo. 



TEST FINALI PRE-OPERATIVI

I test del Sukhoi Su-57 sono entrati nella fase finale: il Su-57 è costantemente sottoposto a numerose verifiche tecniche tanto da aver accumulato oltre 3.500 voli: dovrebbe aver praticamente soddisfatto quasi tutti i requisiti delle specifiche tecnico-tattiche stabilite dai vertici militari della VKS.
Sono in corso dei lavori specifici per dotare il velivolo di nuove armi a lungo raggio.
Attualmente sono dieci i prototipi del Su-57 alle prese coi programmi di collaudo presso i due istituti sperimentali del Flight Research Institute LII “M.M. Gromov” di Zhukovsky e del 929° GLITz (Gosudarstvennyj Letno-Ispitatel’nyj Tzentr o Centro di volo prove e collaudo) sito nella base aerea di Akhtubinsk – Vladimirovka; inoltre, come già detto, il Su-57 è reduce da due distinte missioni operative nel teatro bellico siriano.
Il primissimo lotto di 2 caccia verrà consegnato entro l’anno in corso. Il primo esemplare che doveva essere consegnato a fine dicembre dello scorso anno è stato coinvolto in un incidente durante un volo di collaudo che ne ha causato la distruzione.
A collaudi ultimati si programmerà di incrementare anno dopo anno il numero di esemplari da consegnare fino a concludere, entro il 2028, la fornitura dei 76 caccia ordinati nel maggio dello scorso anno.
I primi caccia destinati alla VKS saranno ancora dotati del motore turbofan Lyulka AL-41F1, ovvero il propulsore che equipaggia i Su-35 “Flanker-E” che sebbene velivoli avanzati di generazione “4++”, non si possono certo definire allo stato dell’arte. Tra il 2023 e il 2025 si prevede di consegnare ai reparti di volo il Su-57 col nuovissimo motore Saturn AF-41F3 noto come “Izdeliye 30” (o progetto 30) realizzato dalla United Engine Corporation.
Tutti i sistemi idraulici del velivolo saranno sostituiti in futuro da sistemi elettrici al fine di aumentarne ulteriormente la stealthness e la sua manovrabilità, oltre a semplificare la manutenzione e renderlo più resistente ad eventuali attacchi ostili.
Il primo volo del prototipo del Su-57 dotato dei nuovi sistemi elettrici dovrebbe aver luogo a metà del 2022 e richiederà una numerosa serie di test a terra e in volo non inferiore ai due anni, specialmente per quanto riguarda la compatibilità elettromagnetica delle nuove apparecchiature e la loro resistenza a tutti i possibili fenomeni climatici, meteorologici e fisici a cui potrebbe essere sottoposto.
Il passaggio ai comandi completamente elettrici, sebbene produca innegabili vantaggi, è comunque tecnicamente impegnativo per gli ingegneri della Sukhoi e richiederà tutto il tempo necessario per lo sviluppo definitivo.
Per quanto concerne l’utilizzo del Su-57 in modalità UCAV (senza pilota), un prototipo sta effettuando prove da terra: il pilota è comunque presente nella cabina di pilotaggio pronto a intervenire in caso di emergenza. Non è da escludere che si possa trattare di una sperimentazione base per un futuro velivolo di sesta generazione.



Varianti

FGFA

Variante biposto sviluppata inizialmente in collaborazione con l'India per l'Aeronautica militare.

UCAV

Nell'agosto 2013, l'azienda russa OAK ha dichiarato di essere in fase di sviluppo per un drone pesante da combattimento basato sul progetto dell'Su-57.

Utilizzatori:
  • Russia - Vozdušno-kosmičeskie sily -12 ordinati nel 2018 che saranno consegnati a partire dal 2019. Uno dei 12 esemplari di preserie è precipitato il 24 dicembre 2019.



ENGLISH

The Sukhoi Su-57 (Russian: Сухой Су-57; unconfirmed NATO reporting name: Felon) is a stealth, single-seat, twin-engine multirole fifth-generation jet fighter being developed since 2002 for air superiority and attack operations. The aircraft is the product of the PAK FA (Russian: ПАК ФА, short for: Перспективный авиационный комплекс фронтовой авиации, romanized: Perspektivny Aviatsionny Kompleks Frontovoy Aviatsii, lit. ''prospective aeronautical complex of front-line air forces''), a fifth-generation fighter programme of the Russian Air Force. Sukhoi's internal name for the aircraft is T-50. The Su-57 is planned to be the first aircraft in Russian military service to use stealth technology. Its maiden flight took place on 29 January 2010 and the first production aircraft are planned to be delivered in 2020.
The fighter is designed to have supercruise, supermaneuverability, stealth, and advanced avionics to overcome the prior generation fighter aircraft as well as ground and naval defences. The Su-57 is intended to succeed the MiG-29 and Su-27 in the Russian Air Force.
The prototypes and initial production batch are to be delivered with a highly upgraded Lyulka AL-31 variant, the AL-41F1, as an interim powerplant while an advanced clean-sheet design engine, currently designated the izdeliye 30, is in final stages of development and expected to be available after mid-2020s. The aircraft is expected to have a service life of up to 35 years.

Development

Origins

In 1979, the Soviet Union outlined a need for a next-generation aircraft intended to enter service in the 1990s. The project was designated the I-90 (Russian: Истребитель, Istrebitel, "Fighter") and required the fighter to have substantial ground attack capabilities and would eventually replace the MiG-29s and Su-27s in frontline tactical aviation service. The subsequent programme designed to meet these requirements, the MFI (Russian: МФИ, Russian: Многофункциональный фронтовой истребитель, Mnogofunksionalni Frontovoy Istrebitel, "Multifunctional Frontline Fighter"), resulted in Mikoyan's selection to develop the MiG 1.44. Though not a participant in the MFI, Sukhoi started its own programme in 1983 to develop technologies for a next-generation fighter aircraft, resulting in the S-37, later designated Su-47. Due to a lack of funds after the collapse of the Soviet Union, the MiG 1.44 programme was repeatedly delayed and the first flight of the prototype did not occur until 2000, nine years behind schedule. The MiG 1.44 was subsequently cancelled and a new programme for a next-generation fighter, PAK FA, was initiated. The programme requirements reflected the capabilities of Western fighter aircraft, such as the Eurofighter Typhoon and F-22 Raptor. In 2002, Sukhoi was selected over Mikoyan as the winner of the PAK FA competition and would lead the design of the new aircraft; Mikoyan continued to develop its proposal as the LMFS (Russian: ЛМФС, Russian: Легкий многофункциональный фронтальный самолёт, Liogkiy Mnogofunktsionalniy Frontovoi Samolyet, "Light Multifunctional Frontline Fighter") which was designed to be smaller and more affordable.
To reduce the PAK FA's developmental risk and spread out associated costs, as well as to bridge the gap between it and older previous generation fighters, some of its technology and features, such as propulsion and avionics, were implemented in the Sukhoi Su-35S fighter, an advanced variant of the Su-27. The Novosibirsk Aircraft Production Association (NAPO) is manufacturing the new multi-role fighter at Komsomol'sk-on-Amur along with Komsomolsk-on-Amur Aircraft Production Association (KnAAPO), and final assembly is to take place at Komsomol'sk-on-Amur. Following a competition held in 2003, the Tekhnokompleks Scientific and Production Center, Ramenskoye Instrument Building Design Bureau, the Tikhomirov Scientific Research Institute of Instrument Design (NIIP), the Ural Optical and Mechanical Plant (UOMZ) in Yekaterinburg, the Polet firm in Nizhny Novgorod and the Central Scientific Research Radio Engineering Institute in Moscow were selected for the development of the PAK-FA's avionics suite. NPO Saturn is the lead contractor for the interim engines; Saturn and MMPP Salyut will compete for the definitive second stage engines. In 2004, the fighter's conceptual design was completed and approved by Russia's Defense Ministry, with Alexander Davidenko selected as the Chief designer. Funding of the programme began in 2005.
On 8 August 2007, Russian Air Force Commander-in-Chief (CinC) Alexander Zelin was quoted by Russian news agencies that the programme's development stage was complete and construction of the first aircraft for flight testing would begin. Three flyable prototypes were planned to be built by 2009. In 2009, the aircraft's design was officially approved.

Procurement

In 2007, Russia and India agreed to jointly develop the Fifth Generation Fighter Aircraft Programme (FGFA) for India. In September 2010, it was reported that India and Russia had agreed on a preliminary design contract where each country was to invest $6 billion; development of the FGFA fighter was expected to take 8–10 years. The agreement on the preliminary design was to be signed in December 2010. India planned on acquiring a modified version for its FGFA programme. It originally planned on buying 166 single-seat and 48 two-seat fighters, but later changed it to 214 single-seat fighters, and later decreased its purchasing size to 144 fighters by 2012. In early 2018, India pulled out of the FGFA project, which it believed did not meet its requirements for stealth, combat avionics, radars and sensors by that time. This news lead some observers to question the future of the whole Su-57 project.
The Russian Air Force was expected to procure more than 150 fighters for PAK FA with the first fighter to be delivered in 2016. In 2011, the Russian Defence Ministry planned on purchasing the first 10 evaluation aircraft after 2012 and then 60 production standard aircraft after 2016. In December 2014, the Russian Air Force planned to receive 55 fighters by 2020. Russian Deputy Minister of Defence Yury Borisov stated in 2015 that the Air Force would slow production, reduce its initial order to 12 fighters, and retain large fleets of fourth-generation fighters due to the nation's economy.
Russian Air Force Commander-in-Chief Viktor Bondarev stated that the fighter planned to enter serial production in 2017, after all trials would be completed. In 2017, Deputy Minister Yury Borisov stated that the Su-57 would most likely enter service in 2018, due to implementation of more advanced engines, and further testing. He also stated that it would be part of the new 2018-2027 state armament programme. Actual number of aircraft to be delivered is yet unknown.
On 30 June 2018, it was reported that an order for 12 aircraft was agreed, with deliveries to the ranks of the Russian Armed Forces starting in 2019. The first aircraft will join fighter regiments at the Lipetsk Air Center. At the same time, the Deputy Prime Minister for Defence and Space Industry Yury Borisov stated that "Today, the Su-35 is one of the world's best fighters, so there is no reason for us to speed up work on mass production of the fifth-generation fighter." Borisov's statement caused confusion among observers. Some interpreted the fifth generation fighter he referenced as the FGFA, the exported variant of the Su-57, while others interpreted it to be directly alluding to the Su-57 itself. This also led to predictions and concerns about the project's future: some have interpreted it as reiteration that the Su-57 program would continue as previously planned, others interpreted it as the Su-57 program would not be mass-produced, and some believe it to be an implicit announcement of the project's cancellation. The slowing of procurement could be because of the current slow growth of the Russian economy, while the future patches' procurement are for an unknown future; the Russian military could be waiting for the more powerful Saturn izdeliye 30 engine to be ready for serial production.
On 22 August 2018, during the International Military-Technical Forum «ARMY-2018», the Russian Defence Ministry and the JSC Sukhoi signed the first contract for delivery of two serial Su-57 fighters. The deliveries of the first two such aircraft are scheduled for 2019 and 2020, respectively.
Russian Defence Ministry planned to conclude a second contract for 13 more aircraft in 2020. However, on 15 May 2019, Russian President Vladimir Putin announced that 76 aircraft will be purchased and delivered to the Air Force by 2028. This came after the price of the Su-57 and equipment was reduced by 20%. The contract for the 76 aircraft was formally signed on 27 June 2019 at the International Military-Technical Forum «ARMY-2019». The same month, General Director of Tactical Missiles Corporation (KRTV) Boris Obnosov reported, a contract for serial production of ammunition for Su-57 fighters was signed, and is being inducted.
JSC Sukhoi has started the serial production of the aircraft in late July 2019.

Flight testing

The prototype's maiden flight was repeatedly postponed from early 2007 after encountering unspecified technical problems. In August 2009, Alexander Zelin acknowledged that problems with the engine and in technical research remained unsolved. On 28 February 2009, Mikhail Pogosyan announced that the air-frame was almost finished and that the first prototype should be ready by August 2009. On 20 August 2009, Pogosyan said that the first flight would be by year's end. Konstantin Makiyenko, deputy head of the Moscow-based Centre for Analysis of Strategies and Technologies said that "even with delays", the aircraft would likely make its first flight by January or February, adding that it would take five to ten years for commercial production.
Flight testing was further delayed when Deputy Prime Minister Sergei Ivanov announced in December 2009 that the first trials would begin in 2010. The first taxi test was successfully completed on 24 December 2009. Flight testing began with T-50-1, the first prototype aircraft, on 29 January 2010. Piloted by Hero of the Russian Federation Sergey Bogdan, the aircraft's 47-minute maiden flight took place at KnAAPO's Dzemgi Airport in the Russian Far East. The second prototype, T-50-2, was originally planned to fly in late 2010, but this was pushed back to March 2011. The first two prototypes lacked radar and weapon control systems. On 14 March 2011, the fighter achieved supersonic flight at a test range near Komsomolsk-on-Amur. The T-50 was displayed publicly for the first time at the 2011 MAKS Airshow.
The third and fourth prototypes first flew in November 2011 and December 2012, respectively. By the end of 2013, five prototypes were flown, with the fifth prototype having its first flight on 27 October 2013; with this flight the programme has amassed more than 450 flights. The first aircraft for state test trials was delivered on 21 February 2014.
Testing would reveal that the initial prototypes did not have adequate fatigue life, with early cracks forming in the fuselage. The five initial prototypes required additional structural reinforcements in order to continue flight tests. The aircraft subsequently underwent a structural redesign, with increased composite material usage, reinforced airframe to meet full life cycle requirements, elongated tail "sting", and slightly greater wingspan; the sixth flyable prototype was the first of the redesigned "second stage" aircraft, with the five prior prototypes considered "first stage" vehicles.
A total of ten flying and three non-flying prototypes were built for flight tests and initial combat trials. Five flying and two non-flying prototypes comprise the "first stage" aircraft design, with the two non-flying prototypes testing static flight loads and avionics integration. The first two flying prototypes tested flight characteristics, while the second two prototypes conducted airborne tests of avionics systems, including the radar and electronic warfare suite. The second prototype has since been used to test the second stage izdeliye 30 engine. The fifth prototype was severely damaged by an in-flight fire, and the remains were combined with parts cannibalized from the sixth prototype in order to return the aircraft to flight status. Starting with the sixth flying aircraft, five more of the structurally redesigned "second stage" aircraft were built, as well as one non-flying prototype to test flight loads on the new structure. The last two prototypes were test articles of production aircraft. Issues and accidents during the testing resulted in repeated delays to the programme, with the first production aircraft originally planned for delivery in 2015; this has been delayed multiple times, and the date is now expected to be in 2020.

Design

Overview

The Su-57 is intended to be a fifth-generation multirole fighter aircraft and the first operational stealth aircraft for the Russian Air Force. Although most information is classified, sources within the Sukhoi company and Defence Ministry have openly stated that the aircraft is to be stealthy, supermaneuverable, have supercruise capability, incorporate substantial amounts of composite materials, and possess advanced avionics such as active phased-array radar and sensor fusion.
The aircraft has a blended wing body fuselage and incorporates all-moving horizontal and vertical stabilizers; the vertical stabilizers toe inwards to serve as the aircraft's airbrake. The aircraft incorporates thrust vectoring and has adjustable leading–edge vortex controllers (LEVCONs) designed to control vortices generated by the leading edge root extensions, and can provide trim and improve high angle of attack behaviour, including a quick stall recovery if the thrust vectoring system fails. The advanced flight control system and thrust vectoring nozzles make the aircraft departure-resistant and highly maneuverable in both pitch and yaw, enabling the aircraft to perform very high angles of attack maneuvers such as the Pugachev's Cobra and the bell maneuver, along with doing flat rotations with little altitude loss. The Su-57 has a climb rate ranging from 330 m/s (1,100 ft/s) to 361 m/s (1,180 ft/s). The aircraft makes extensive use of composites, with the material comprising 25% of the structural weight and almost 70% of the outer surface.
Weapons are housed in two tandem main weapons bays between the engine nacelles and smaller bulged, triangular-section bays near the wing root. Internal weapons carriage eliminates drag from external stores and enables higher performance compared to external carriage, as well as enhancing stealth. The Su-57's aerodynamics and engines enable it to achieve Mach 2 and fly supersonic without afterburners, or supercruise, a significant kinematic advantage over prior generations of aircraft. Combined with a high fuel load, the fighter has a supersonic range of over 1,500 km (930 mi), more than twice that of the Su-27. Extendable refueling probe is available to further increase its range. In the Su-57's design, Sukhoi addressed what it considered to be the F-22's limitations, such as its inability to use thrust vectoring to induce roll and yaw moments and a lack of space for weapons bays between the engines, and complications for stall recovery if thrust vectoring fails.
On 27 April, 2020, it was reported by the Izvestia that the Su-57 hydraulic systems were planned to be replaced with electromechanical drives (actuators), improving the aircraft's combat survivability, stealth characteristics, maneuverability and reducing the maintenance complexity. According to the report, the first flight of a modernized Su-57 was scheduled for the middle of 2022, with the trials of the "electric" fighter version to take at least two years.

Stealth

The Su-57 is planned to be the first operational aircraft in Russian Air Force service to use stealth technology. Similar to other stealth fighters such as the F-22, the airframe incorporates planform edge alignment to reduce its radar cross-section (RCS); the leading and trailing edges of the wings and control surfaces and the serrated edges of skin panels are carefully angled to reduce the number of directions the radar waves can be reflected. Weapons are carried internally in weapons bays within the airframe and antennas are recessed from the surface of the skin to preserve the aircraft's stealthy shape. The infrared search-and-track sensor housing is turned backwards when not in use and its rear is treated with radar-absorbent material (RAM) to reduce its radar return. To mask the significant RCS contribution of the engine face, the walls of the inlet ducts are coated with RAM and the partial serpentine ducts obscure most of the engines’ fan and inlet guide-vanes (IGV); the remaining exposed engine face is masked by a radar blocker similar in principle to that used on the F/A-18E/F. According to Sukhoi's radar blocker patent, the slanted blocker grid is placed in front of the IGV at a distance of 0.7—1.2 times the diameter of the duct. The fuselage of the aircraft is coated with RAM to absorb radar emissions and reduce the reflection back to the source.
Due to the extensive use of polymeric carbon plastics composites, the aircraft has four times fewer parts compared to the Su-27, weighs less and is easier to mass-produce. The aircraft canopy is made of composite material and 70-90 nm thick metal oxide layers with enhanced radar wave absorbing to minimize the radar return of the cockpit by 30% and protect the pilot from the impact of ultraviolet and thermal radiation. The Su-57's design emphasizes frontal stealth, with RCS-reducing features most apparent in the forward hemisphere; the shaping of the aft fuselage, the seams between parts, and rivets are much less optimized for radar stealth compared to the F-22. However, during MAKS 2019 the craftsmanship of the fuselage was actually finer than expected and looked smooth despite the rivets.
The combined effect of airframe shape and RAM of the production aircraft is estimated to have reduced the aircraft's RCS to a value thirty times smaller than that of the Su-27. Sukhoi's patent for the T-50 prototype stealth features cites an intention to reduce average RCS to approximately 0.1 to 1 m2, compared to the Su-27's RCS of approximately 10 to 15 m2. Like other stealth fighters, the Su-57's low observability measures are chiefly effective against high-frequency (between 3 and 30 GHz) radars, usually found on other aircraft. The effects of Rayleigh scattering and resonance mean that low-frequency radars, employed by weather radars and early-warning radars are more likely to detect the Su-57 due to its size. Such radars are also large, susceptible to clutter and are less precise.

Engines

Pre-production T-50 and initial production batches of the Su-57 will use interim engines, a pair of NPO Saturn izdeliye 117, or AL-41F1, augmented turbofans. The engine is a highly improved and uprated variant of the AL-31 that powers the Su-27 family of aircraft and produces 93.1 kN (21,000 lbf) of dry thrust, 147.1 kN (33,067 lbf) of thrust in afterburner, and has a dry weight of approximately 1,600 kg (3,530 lb). The engines have full authority digital engine control (FADEC) and are integrated into the flight control system to facilitate maneuverability and handling. The AL-41F1 is closely related to the Saturn izdeliye 117S engine, or AL-41F1S, used by the Su-35S, with the latter's separate engine control system being the key difference.
The AL-41F1 engines incorporate thrust vectoring (TVC) nozzles whose rotational axes are each canted at an angle, similar to the nozzle arrangement of the Su-35S. This configuration allows the aircraft to produce thrust vectoring moments about all three rotational axes, pitch, yaw and roll. Thrust vectoring nozzles themselves operate in only one plane; the canting allows the aircraft to produce both roll and yaw by vectoring each engine nozzle differently. The engine inlet incorporates variable intake ramps for increased supersonic efficiency and retractable mesh screens to prevent foreign object debris being ingested that would cause engine damage. The AL-41F1 is to also incorporate infrared and RCS reduction measures. In 2014, the Indian Air Force openly expressed concerns over the reliability and performance of the AL-41F1; during the 2011 Moscow Air Show, a T-50 suffered a compressor stall that forced the aircraft to abort takeoff.
Production fighters from mid-2020s onward will be equipped with a more powerful engine known as the izdeliye 30. Compared to the AL-41F1, the new powerplant will have increased thrust, lower costs, better fuel efficiency, and fewer moving parts; the engine also has glass-fibre plastic IGVs to reduce the aircraft's radar signature. Those features, along with subsequently improved reliability and lower maintenance costs will improve the aircraft performance and reliability. The izdeliye 30 is designed to be 30% lower specific weight than its AL-41F1 predecessor. The new engine is estimated to produce approximately 107 kN (24,054 lbf) of dry thrust and 176 kN (39,556 lbf) in afterburner. Full scale development began in 2011 and the engine's compressor began bench testing in December 2014. The first test engines were completed in 2016. The new powerplant is designed to be a drop-in replacement for the AL-41F1 with minimal changes to the airframe.
On 5 December 2017, the second Su-57 prototype (T-50-2, bort no. 052), fitted with the izdeliye 30 engine, first took off from the Gromov Flight Research Institute. The 17–minute test flight was carried out by Sergei Bogdan, Sukhoi chief test pilot. The izdeliye 30 engine was installed on the port-side engine position while the AL-41F1 remained on the starboard side. The izdeliye 30 features a new nozzle with serrated flaps compared to conventional ones on the AL-41F1 nozzle. On 8 February 2018, Russian Deputy Minister of Defence Yury Borisov said that the new engine's performance was "...difficult to judge, because all we have had is this one flight. Everything seems normal, but... many flights are to be performed. As a rule, such trials take 2-3 years". By 6 December 2019, Rostec has conducted 16 flights of the Izdeliye 30 engine to check its characteristics in various flight modes, specifically, the operation of the vectoring jet nozzle and the oil system at negative overloads.

Armament

The T-50 prototype has two tandem main internal weapon bays each approximately 4.6 m (15.1 ft) long and 1.0 m (3.3 ft) wide and two small triangular-section weapon bays that protrude under the fuselage near the wing root. Internal carriage of weapons preserves the aircraft's stealth and significantly reduces aerodynamic drag, thus preserving kinematic performance compared to performance with external stores. The Su-57's high cruising speed is expected to substantially increase weapon effectiveness compared to its predecessors. Vympel is developing two ejection launchers for the main bays: the UVKU-50L for missiles weighing up to 300 kg (660 lb) and the UVKU-50U for ordnance weighing up to 700 kg (1,500 lb).
For air-to-air combat, the Su-57 is expected to carry four beyond-visual-range missiles in its two main weapons bays and two short-range missiles in the wing root weapons bays. The primary medium-range missile is the active radar-homing K-77M (izdeliye 180), an upgraded R-77 variant with AESA seeker and conventional rear fins. The short-range missile is the infrared-homing ("heat seeking") K-74M2 (izdeliye 760), an upgraded R-74 variant with reduced cross-section for internal carriage. A clean-sheet design short-range missile designated K-MD (izdeliye 300) is being developed to eventually replace the K-74M2. For longer ranged applications, four large izdeliye 810 beyond-visual-range missiles can be carried, with two in each main weapons bay. Reportedly, the fighter will also be able to carry the long–range hypersonic R-37M missile.
The main bays can also accommodate air-to-ground missiles such as the Kh-38M, as well as multiple 250 kg (550 lb) KAB-250 or 500 kg (1,100 lb) KAB-500 precision guided bombs. The aircraft is also expected to carry further developed and modified variants of Kh-35UE (AS-20 "Kayak") anti-ship missile and Kh-58UShK (AS-11 "Kilter") anti-radiation missile. For missions that do not require stealth, the Su-57 can carry stores on its six external hardpoints. BrahMos Aerospace chief A. Sivathanu Pillai stated that there was a possibility of the installation of BrahMos supersonic cruise missile on the Su-57 FGFA derivative. New hypersonic missile with characteristics similar to the Kh-47M2 Kinzhal ALBM is also being developed for the Su-57. The missile is to have intra-body accommodation and smaller dimensions to allow it to be carried inside the Su-57's main central weapon bays. A new missile appeared to be a derivative of R-77, was displayed during Vympel's 70th anniversary on 18 November 2019. The new missile's length was approximately just 2/3 of R-77's 12 feet length, and thought to be designed to fit inside the triangular wing root bays under the Su-57's wings.
The aircraft has an internally mounted 9A1-4071K (GSh-30-1) 30 mm autocannon near the right LEVCON root. The cannon is the lightest in 30mm class with 50 kg weight, and could fire up to 1,800 rounds per minute. The cannon can fire blast-fragmentation, incendiary and armor-piercing tracer rounds and is effective against even lightly armored ground, sea and aerial target up to 800 m for aerial target and 1,800 m for ground target. The cannon is equipped with autonomous water cooling system, where water inside the barrel jacket is vaporized during operation.

Cockpit

The Su-57 has a glass cockpit with two 38 cm (15 in) main multi-functional LCD displays similar to the arrangement of the Su-35S. Positioned around the cockpit are three smaller control panel displays. The cockpit has a wide-angle (30° by 22°) head-up display (HUD). Primary controls are the joystick and a pair of throttles. The aircraft uses a two-piece canopy, with the aft section sliding forward and locking into place. The canopy is treated with special coatings to increase the aircraft's stealth.
The Su-57 employs the NPP Zvezda K-36D-5 ejection seat and the SOZhE-50 life support system, which comprises the anti-g and oxygen generating system. The 30 kg (66 lb) oxygen generating system will provide the pilot with unlimited oxygen supply. The life support system will enable pilots to perform 9-g maneuvers for up to 30 seconds at a time, and the new VKK-17 partial pressure suit will allow safe ejection at altitudes of up to 23,000 m (75,000 ft). In November 2018, the system is said to be at the final stage of test -the stage of state flight tests- and the test pilots are already flying in this equipment. The pilot gear also consisted of a digital helmet which connected to on-board photo and video cameras to improve pilot's situational awareness. It also features pupil's movement detection system to allow automatic targeting unlike previous Soviet fighters. There also a survival kit consisting a pan, antenna, signal mirror, 16 cubes of sugar, first aid kit, two match boxes, a signal pistol with charges, 1.5-liter bottle of water, machete knife, radio beacon, and portable radio. The pilot could use the survival kit's container as a boat or water-proof sleeping bag if necessary.

Avionics

The main avionics systems are the Sh-121 (Russian: Ш-121) multifunctional integrated radio electronic system (MIRES) and the 101KS "Atoll" (Russian: 101КС "Атолл") electro-optical system.
The Sh-121 consists of the N036 Byelka radar system and L402 Himalayas electronic countermeasures system. Developed by Tikhomirov NIIP Institute, the N036 consists of the main nose-mounted N036-1-01 X band active electronically scanned array (AESA) radar, or active phased array radar (Russian: Активная фазированная антенная решётка, Aktivnaya Fazirovannaya Antennaya Reshotka, Russian: АФАР, AFAR) in Russian nomenclature, with 1,552 T/R modules and two side-looking N036B-1-01 X-band AESA radars with 358 T/R modules embedded in the cheeks of the forward fuselage for increased angular coverage. Moreover, the side-looking radar could enable the Su-57 to employ extreme beaming tactic (fighter turns 90 degrees away / perpendicular to an enemy's pulse doppler radar array, so that the enemy's radar would not detect / misinterpret it as a non-moving object) while still able to guide its own missile. The suite also has two N036L-1-01 L band transceivers on the wing's leading edge extensions that are not only used to handle the N036Sh Pokosnik (Reaper) friend-or-foe identification system but also for electronic warfare purposes. Computer processing of the X- and L-band signals by the N036UVS computer and processor enable the system's information to be significantly enhanced.
In 2012, ground tests of the N036 radar began on the third T-50 prototype aircraft. The L402 Himalayas electronic countermeasures (ECM) suite made by the Kaluga Research Radio Engineering Institute uses both its own arrays and that of the N036 radar system. One of its arrays is mounted in the dorsal sting between the two engines. The system was mounted on the aircraft in 2014. Radio telephone communication and encrypted data exchange among various aircraft and also command centers (ground and sea-based and airborne) will be provided by the S-111 system, developed by Polyot. The system will be based on a modular concept and could be installed not only on the Su-57, but also on various aircraft, helicopter, and drones. "Its effective range of operation is up to 1,500 kilometres (930 mi)" a spokesman said. "The system's reliability is guaranteed by the multiple redundancy of the main functions and cutting edge technical solutions, as well as a wide range of radio channels."
The UOMZ' 101KS "Atoll" electro-optical system consisted of:
The 101KS-V infra-red search and track turret mounted on the starboard side in front of the cockpit. This sensor can detect, identify, and track multiple airborne targets simultaneously.
The 101KS-O Directional Infrared Counter Measures system has sensors housed in turrets mounted on the dorsal spine and forward fuselage under the cockpit and uses modulated laser-based countermeasures to confuse or destroy heat-seeking missiles' tracking mechanism. Judging from its position, the system is allegedly intended not only as a self-protection against MANPADS but also air-to-air missile. In this regard, the Su-57 could be something of a pioneer, while similar DIRCM capabilities haven't been ported over to the latest generations of high-flying western fighter aircraft.
The 101KS-U ultraviolet missile approach warning sensors (MAWS) are used against infra-red homing missiles. MAWS, using ultraviolet technology, can operate under all weather conditions and will not be affected by solar clutter. It provides good directional information of the incoming missile for good decoy dispensing decision making, maneuvering and to cue the DIRCM system into action.
The 101KS-P, a high-resolution thermal imager, provides low-altitude piloting and landing in night conditions. It is installed in front of the short-range missile compartments and is not used for targeting purposes, but for efficient low altitude flight and night landing operations.
The optional 101KS-N is an external navigation and targeting pod. It will have similar function to the AN/AAQ28 Litening and AN/AAQ33 Sniper advanced targeting pods of the US military and will be mounted under the air intake.

In 2014, Concern Radio-Electronic Technologies (KRET) announced it had created an upgraded BINS-SP2M strapdown inertial navigation system, developed by its two enterprises, Moscow Institute of Electromechanics and Automatics (MIEA) and Ramensky Instrument Engineering Plant (RPZ). Built on the basis of laser gyros and quartz accelerometers, it autonomously processes navigation and flight information, determines position and motion parameters in the absence of satellite navigation, and can integrate with GLONASS. It is guaranteed to last at least 10,000 hours, and can be used universally, not only in airborne, but also in marine and terrestrial equipment. In 2016, KRET announced it is developing a multifunctional video processing system called "Okhotnik" (Hunter) to increase the Su-57's target detection range as well as to improve automatic detection and tracking of targets.
In April 2017, UAC announced that a new next-generation integrated avionics suite has started flight-testing. According to Dmitry Gribov, a chief designer of the new complex, the new avionics suite—called the ИМА БК, the Russian acronym for Интегрированная модульная авионика боевого комплекса (integrated modular avionics combat systems)—will replace a system designed in 2004 called Багет (Baguette) used on the Su-35. The still-in-development system has more than 4 million lines of code. The IMA BK makes use of indigenous Russian multi-core microprocessors and a new indigenous real-time operating system called "BagrOS-4000". The new avionic suite also makes use of fiber-optic channels with a throughput of more than 8 Gbit/s, which is up from 100 Mbit/sec for traditional copper wires. The new IMA BK integrated avionics suite is designed to automatically detect, identify, and track the most dangerous targets and offer the pilot the best solution to engage an enemy. The new system will take control of almost all of the key sensors of the aircraft—radar, navigation and communication that in previous aircraft were controlled by separate computers—then simultaneously performs the role of an electronic pilot, electronic navigator and electronic flight engineer.
A monitoring system mimicking a living organism's nervous system will allow real-time assessment of the aircraft's condition and predict the remaining 'life' of the composite parts of the aircraft by combining optical fibers, with sensitivity to mechanical influences, with the aircraft's network system. The information about the aircraft's condition will be transmitted via laser beam through the optical fiber woven into the structure. It will decrease the aircraft's maintenance costs and allow parts to be repaired preemptively, thus improving flight safety.

Unmanned capability

On 16 May 2020, it was reported by RIA that one of the Su-57 prototypes had been tested in an "unmanned mode", with the pilot acting as an observer of the plane's actions.

Possible role

According to the latest Russian military doctrine which considers the Russian Armed Forces as defensive forces meant to protect the country and its allies while maintaining a strategic deterrence capability, this fighter follows a different design philosophy when compared to western fifth generation fighter. With its forward-optimized stealth and infrared sensor, the aircraft could be considered as a counter-stealth fighter meant to get as close as possible to adversary stealth jets before engaging them, diminishing the enemy's stealth advantage and forcing them to a close quarter dogfight, where it has the theoretical advantage due to its 3-D thrust vectoring and supermaneuverability.
According to Bill Sweetman, the Su-57's high operational speed and altitude combined with its standoff weaponry could be hinting at its role as a "sort of airborne sniper", designed to fly fast and high to engage enemy support aircraft. This claim is supported by Russia's intentions to adapt the new R-37M (Izdeliye 810) air-to-air missile with range of more than 300 km to the Su-57's armament, giving it a role similar to the MiG-31BM interceptors. Newly designed anti-ship and hypersonic weapons like Kh-47M2 Kinzhal could also enable the Su-57 to perform as a maritime strike aircraft.
The Su-57 could also serve as a testbed for advanced AI and man-unmanned teaming technologies intended for use in a sixth-generation fighter program.

Operational history

Russia

Testing and trials

The 929th State Flight Test Centre (GLITS) received its first T-50 prototype for further testing and state trials in March 2014, and Russian Air Force Commander-in-Chief Lieutenant General Viktor Bondarev said that deliveries of initial production T-50 fighter were expected to begin in 2016. External weapon trials started in May 2014. In the event, the 2016 date for production was missed.
On 8 February 2018, then Deputy Minister of Defence Yury Borisov said that the first stage of state trials had been concluded and that the combat trials were on schedule. During the interview, he also reported that the contract for an initial batch of 12 aircraft was to be signed in 2018. First two serial units were ordered in August 2018, with term of delivery by 2020. State trials are to be complete in 2019.
On 27 September 2019, Russian MoD released a video showcasing the first flight of Okhotnik alongside Su-57. Reportedly the UAV operated autonomously and flew for more than 30 minutes interacting with the Su-57 to test extending the fighter's radar and target designation range for use of long-range air-launched weapons from the outside of enemy air defenses.
On 24 March 2020, the Russian MoD released a video with the first demonstration of the fighter firing an air-to-air missile. The Su-57 in the video fires what appears to be a short-range R-74/K-74 missile series.
According to the Executive Director of Rostec Corporation, Oleg Yevtushenko, Su-57 have been flight tested several thousand times. The flight tests experience, as well as the results of the investigation of the first serial airplane crash, are "used by the aircraft developers".
On 28 June 2020, TASS, with reference to anonymous sources within the military-industrial complex, reported that a 'swarm' teaming experiment had been conducted with a group of Su-35s and an Su-57 acting as a command and control aircraft. During the experiment, information was exchanged between fighters in real time: the information control system of each aircraft automatically processed data from its own sensors and sensors of other aircraft, providing a comprehensive battlespace picture and significantly increasing the efficiency of combat missions. Reportedly, the experiment was conducted in "real combat conditions”.

Syrian combat evaluation

On 21 February 2018, two Su-57s performed first international flight as they were spotted landing at the Russian Khmeimim air base in Syria. The aircraft were deployed along with four Sukhoi Su-35 fighters, four Sukhoi Su-25s, and one Beriev A-50 AEW&C aircraft. Three days later two more Su-57s were reported to have arrived in Syria. The deployment was criticised by some experts as overly risky, especially after reports of drone attacks at Khmeimim air base. Military correspondent of Komsomolskaya Pravda Viktor Baranets was cited as saying that according to his information the Su-57s have "excellently" carried out their mission in Eastern Ghouta. On 1 March 2018, the Russian Defence Minister Sergey Shoygu confirmed that the two Su-57s indeed spent two days in Syria and successfully completed a trials program, including combat trials during which parameters of weapons work were monitored. On 25 May 2018, the Russian Defence Ministry disclosed that during the February 2018 deployment to Syria, a Su-57 fired a cruise missile in combat, likely a Kh-59MK2. On 18 November 2018, the Russian Defence Ministry posted an extended video of the fighters' flights, and announced that Su-57 performed 10 flights during its deployment to Syria. However, the video did not specify when the test flights took place.
On 18 December 2019, Chief of the Russian General Staff, Valery Gerasimov said that Russian Defense Ministry has once again tested Su-57 in Syria, and all tasks have been successfully fulfilled.

Potential operators

Turkey

In May 2018, Turkish media Yeni Safak stated that Turkey might evaluate Su-57 purchase if the US cancels F-35 deliveries due to Turkey's S-400 purchase. However, internal source stated that the possibility of Su-57 purchase was based on expert's opinion and do not reflect the official position of Ankara. While on 30 June 2018, Turkey received its first F-35 in a ceremony at Lockheed Martin's facilities in Texas, the US ultimately expelled Turkey from the F-35 fighter programme after the first S-400 delivery in July 2019.
In May 2019, CEO of Rostec Sergey Chemezov said that Russia was ready to cooperate with Turkey on the export and local production of the Su-57. On 30 August 2019, President Erdogan confirmed Turkey and Russia are negotiating possible Su-57 fighter deliveries after he personally inspected the aircraft at the 2019 MAKS air show in Moscow. On 14 September 2019, a Sukhoi Su-57 fighter reportedly took part in the 2019 Technofest festival held in Istanbul.

Algeria

On 27 December 2019, Algeria has reportedly signed a contract for 14 aircraft as part of large military deal that also includes purchase of Su-34 and Su-35 fighters. The decision was reportedly taken in summer 2019, when Algerian delegation personally inspected the Su-57 at the 2019 MAKS air show. However, neither Russian nor Algerian governments ever confirmed that such deal exists.

Others

During the 2019 Dubai Air Show in the UAE, Sergey Chemezov, in charge of Rostec, talked about the possibility of "localization" of portions of the Su-57 supply chain within other countries that decide to buy those jets, including '...United Arab Emirates, India or Turkey...', depends on the capabilities of the defense industrial base of the customer in question.
Variants

FGFA

The completed joint Indian/Russian versions of the single-seat or two-seat FGFA will differ from the current T-50 flying prototypes in 43 ways with improvements to stealth, supercruise, sensors, networking, and combat avionics.
In March 2010, Sukhoi director Mikhail Pogosyan projected a market for 1,000 fighter aircraft over the next four decades, which will be produced in a joint venture with India, 200 each for Russia and India and 600 for other countries. He has also said that the Indian contribution would be in the form of joint work under the current agreement rather than as a joint venture. In June 2010, the Indian Air Force planned to receive 50 of the single-seat "Russian version" before receiving the two-seat FGFA. Then in an October 2012 interview the Chief of Air Staff of India, NAK Browne, said that the IAF will purchase 144 of the single-seat FGFA. To reduce development costs and timelines, the IAF plans to begin induction of the FGFA in 2020.
In April 2018, it was reported that India is withdrawing from the program. India has become increasingly disappointed with the project's progress after years of negotiations, delays, and struggles with Russia. India is also not satisfied with the capabilities of Su-57, the basis of the FGFA with one of the main issues being the Su-57's insufficient stealth design.
On 9 July 2019, during a meeting with IAF representatives, Russia offered India to resume its participation in Su-57 program. Deputy Director of Russia's Federal Service for Military and Technical Cooperation Vladimir Drozhzhov told that "Russia is open to that... We are ready and are proposing this program to our Indian partners". IAF Air Chief Marshall Birender Singh Dhanoa during an interview with Russian Ministry of Defense's official newspaper Krasnaya Zvezda (Red Star), stated that while Su-57 is currently not being considered for the IAF, but the combat aircraft can be evaluated once it joins active service with the Russian Air Force.

Other versions

Alexei Fedorov has said that any decision on applying fifth-generation technologies to produce a smaller fighter (comparable to the F-35) must wait until after the heavy fighter, based on the T-50, is completed.
A naval version of the Su-57 was proposed for the Project 23000E or Shtorm supercarrier. Models of the aircraft carrier project are showing Su-57 on board, with folding wings and stabilators. The Su-57 should be able to use the takeoff ramp as well as the Electromagnetic Aircraft Launch System.
The aircraft is used as a testbed for integration with UAVs as well as various subsystems (including weapon, control and navigation systems) being developed for Russia's future sixth-generation combat system, both in manned and unmanned version. In January 2019, it was reported the third flyable Su-57 prototype (bort. no 053) is being used for interaction with the Sukhoi S-70 Okhotnik UCAV, and testing of its avionics systems.

Export

Sukhoi states that the main export advantage of the PAK FA is its lower cost than current US fifth generation jet fighters. Russia was reported to be offering the PAK FA for South Korea's next generation jet fighter. South Korea's defence procurement agency confirmed that the Sukhoi PAK FA was a candidate for the Republic of Korea Air Force's next-generation fighter (F-X Phase 3) aircraft; however, Sukhoi did not submit a bid by the January 2012 deadline.
The PAK FA was slated to be introduced for export in 2022 with the introduction of the Sukhoi/HAL FGFA, the primary export version, for the Indian Air Force. Ruslan Pukhov, director of the Centre for Analysis of Strategies and Technologies, has projected that Vietnam will be the second export customer for the fighter. In 2012, Russian Defence Minister Anatoly Serdyukov said that Russia and India would jointly build the export version of the T-50 starting in 2020. Mikhail Pogosyan, the head of United Aircraft Corporation, said in 2013 that the Russian PAK FA and the Sukhoi/HAL FGFA will use "identical onboard systems and avionics".
In 2013, Russia offered Brazil participation and joint production in a next-generation fighter based on the T-50.
On 28 March 2019, an export version dubbed Su-57E was first promoted to international customers during the 2019 Langkawi International Maritime and Aerospace Exhibition. The aircraft was officially unveiled at the 2019 MAKS International Aviation and Space Salon. Su-57E was first publicly displayed in August 2019 at the 2019 MAKS International Aviation and Space Salon held in Moscow.

Operators:
  • Russia - Russian Aerospace Forces
  • Russian Air Force – 78 aircraft on order.

Accidents

On 10 June 2014, the fifth flying prototype, aircraft T-50-5, was severely damaged by an engine fire after landing. The pilot managed to escape unharmed. Sukhoi stated that the aircraft will be repaired, and that the fire "will not affect the timing of the T-50 test program".
On 24 December 2019, the first serial Su-57 (bort number "01 blue") crashed 110–120 km away from the Dzyomgi Airport, Khabarovsk Krai, during the final stage of its factory trials due to malfunction of the control system. The pilot ejected and was recovered by helicopter. According to TASS, the test flight was carried out at the altitude of 8,000 meters when the malfunction occurred, causing the airplane to enter a rapid spiral descent. When all attempts to stabilize the airplane into a horizontal flight using the manual flight control system failed, the pilot ejected at the altitude of 2,000 meters.

Specifications (Su-57)

General characteristics:
  • Crew: 1
  • Length: 20.1 m (65 ft 11 in)
  • Wingspan: 14.1 m (46 ft 3 in)
  • Height: 4.74 m (15 ft 7 in)
  • Wing area: 78.8 m2 (848 sq ft)
  • Empty weight: 18,000 kg (39,683 lb)
  • Gross weight: 25,000 kg (55,116 lb) typical mission weight, 29,270 kg (64,530 lb) at full load
  • Max takeoff weight: 35,000 kg (77,162 lb)
  • Fuel capacity: 10,300 kg (22,700 lb) internally
  • Powerplant: 2 × Saturn AL-41F1 (initial production) turbofans with thrust vectoring, 93.1 kN (20,900 lbf) thrust each dry, 147.2 kN (33,100 lbf) with afterburner
  • Powerplant: 2 × izdeliye 30 (in development) turbofans with thrust vectoring, 107.9 kN (24,300 lbf) thrust each dry, 176.6 kN (39,700 lbf) with afterburner.

Performance:
  • Maximum speed: Mach 2 (2,120 km/h; 1,320 mph) at altitude
  • Mach 1.6 (1,710 km/h; 1,060 mph) supercruise at altitude
  • Range: 3,500 km (2,200 mi, 1,900 nmi) subsonic, 4,500 km from 2 outboard fuel tanks
  • Supersonic range: 1,500 km (930 mi, 810 nmi)
  • Service ceiling: 20,000 m (66,000 ft)
  • g limits: +9.0
  • Wing loading: 371 kg/m2 (76 lb/sq ft) typical mission weight
  • Thrust/weight:
  • AL-41F1: 1.02 (1.19 at typical mission weight)
  • izdeliye 30: 1.15–1.2 (1.36 at typical mission weight).

Armament:
  • Guns: 1 × 30 mm Gryazev-Shipunov GSh-30-1 autocannon
  • Hardpoints: 12 hardpoints (6 × internal, 6 × external)
  • Air-to-air missiles:
  • 4 × RVV-MD
  • 2 × R-73
  • R-37M
  • Air-to-surface missiles:
  • 4 × Kh-38ME, Kh-59MK2.
Anti-ship missiles:
  • 2 × Kh-35E, 31 etс.
  • Anti-radiation missiles:
  • 4 × Kh-58UShKE
  • 250, 500, 1500 kg guided bombs
  • Anti-tank "Drill" 500 kg cluster-bomb + active homing.

Avionics:
  • Sh-121 multifunctional integrated radio electronic system (MIRES)
  • Byelka radar (400 km, 60 tracks with 16 targeted)
  • N036-1-01: Frontal X-band active electronically scanned array (AESA) radar
  • N036B-1-01: Cheek X-band AESA radars for increased angular coverage
  • N036L-1-01: Slat L-band arrays for IFF
  • L402 Himalayas electronic countermeasure suite
  • 101KS Atoll electro-optical targeting system
  • 101KS-O: Laser Directional Infrared Counter Measures
  • 101KS-V: Infra-red search and track
  • 101KS-U: Ultraviolet missile approach warning system
  • 101KS-N: advanced stabilised navigation and targeting system
  • 101KS-N: optional external Targeting pod
  • 101KS-P: thermal imager for low altitude flying and night landing.
(Web, Google, Wikipedia, Analisidifesa, You Tube) 









































































Nessun commento:

Posta un commento

USAF - T-7A REDHAWK: nelle ultime settimane sono stati riscontrati ulteriori problemi durante i test che hanno richiesto diversi aggiornamenti al software di controllo del volo, che causano problemi di controllo quando l'aereo opera ad alti angoli di attacco.

https://svppbellum.blogspot.com/ Blog dedicato agli appassionati di DIFESA,  storia militare, sicurezza e tecnologia.  La bandiera è un simb...