https://svppbellum.blogspot.com/
Blog dedicato agli appassionati di DIFESA, storia militare, sicurezza e tecnologia.
La Propulsione Walter, o in tedesco Walter-Antrieb, fu sviluppata da Hellmuth Walter per la Reichsmarine/Kriegsmarine alla metà degli anni trenta presso la Germaniawerft di Kiel.
L'obiettivo era di sviluppare un sistema che potesse generare corrente sufficiente per i motori elettrici anche sott'acqua, là dove i motori Diesel non potevano essere impiegati. Gli accumulatori usati comunemente avevano una capacità limitata a poche ore. Così si cercò di trasformare perossido di idrogeno (acqua ossigenata) in vapore ad alta temperatura con l'aiuto di un catalizzatore e di produrre conseguentemente corrente mediante una turbina.
Processo a freddo
Inizialmente il processo fu realizzato senza l'ausilio di alte temperature, "a freddo": il perossido d'idrogeno veniva spruzzato da ugelli sottili su un catalizzatore di biossido di manganese (pirolusite). Questa miscela vapore - ossigeno così prodotta veniva diretta ad alta pressione in una turbina ed era quindi utilizzabile come forza motrice.
Processo a caldo
Nel 1936 fu sperimentato il processo a caldo. In questo caso la struttura era costituita da un decompositore o reattore con collegata una camera di combustione, un separatore ed una turbina a vapore. Il decompositore era costituito da una camera di compressione, nella quale era applicato orizzontalmente un blocco poroso di permanganato di potassio o di ossido di manganese(IV) - il catalizzatore. Dal coperchio della camera, attraverso più ugelli il perossido d'idrogeno veniva spruzzato sul catalizzatore decomponendosi così nei suoi singoli elementi: vapore acqueo (550 - 600° C) e ossigeno. Questa miscela poteva defluire attraverso il catalizzatore poroso nella zona inferiore del reattore. Da lì partiva un tubo conduttore fino alla camera di combustione collegata. La miscela ossigeno - vapore acqueo entrava quindi a livello del coperchio della camera di combustione e veniva trasformata in un combustibile vaporizzato con una fiamma caldissima (2000° C). Per evitare il surriscaldamento del collo della camera di combustione, esso veniva raffreddato con acqua e all'acqua veniva consentito di entrare nel flusso rovente del gas attraverso minutissimi fori. Questa produzione enorme di vapore (35 - 40 T/h) consentiva il funzionamento della turbina a vapore della potenza di 7 500 PS. A causa dei gravi danni alle pale della turbina (dovuto all'attrito del blocco catalizzatore) venne collocato successivamente un separatore tipo Zyklon tra l'uscita della camera di combustione e l'ingresso della turbina. L'uscita del vapore dalla turbina venne collegato a un condensatore, per aumentare il grado di efficienza della turbina e anche per poter riutilizzare il costoso condensato (acqua distillata). La parte di CO2 venne pompata fuori bordo, grazie ad un compressore, e assorbita completamente dall'acqua marina, di modo che fosse possibile una navigazione senza bolle (scia particolarmente rivelatrice-n.d.r.). Si pensò anche di montare un sistema notevolmente più piccolo e di eguale struttura anche su aerei da combattimento, dove la camera di combustione era però collocata orizzontalmente al timone. Un separatore e un condensatore, naturalmente, non erano necessari in questo caso, poiché l'espulsione di vapore e di gas serviva direttamente come massa di supporto, proprio come in tutti i motori a reazione. Il sistema veniva, tuttavia, inserito solo per breve tempo nel corso del combattimento per aumentare significativamente la velocità. I rendimenti sopramenzionati erano raggiunti solo con l'utilizzo di una concentrazione di perossido d'idrogeno tra il 90 ed il 94%.
Processo indiretto
Oltre al processo a caldo diretto venne sperimentato per la turbina Walter anche un processo indiretto, con un circuito chiuso di vapore, generato in uno scambiatore di calore che veniva riscaldato dai gas di scarico della camera di combustione. Questo metodo aveva un minor consumo specifico di perossido d'idrogeno (T-Stoff), ma occupava più spazio ed era più pesante del processo diretto.
Consumo carburante
Il generatore di forza motrice Walter ha un elevato consumo specifico di perossido di idrogeno. Il consumo è di circa:
- 5 kg/kWh e più nel processo freddo;
- 2,35 kg/kWh nel processo a caldo diretto;
- 1,85 kg/kWh nel processo diretto caldo, utilizzando un condensatore (Il gas di scarico difficilmente è esposto alla pressione d'immersione; il gradiente di pressione è maggiore nella turbina);
- 1,32 kg/kWh nel processo indiretto.
Utilizzi
Durante il 1940 delle prove vennero eseguite a bordo del sottomarino V80 equipaggiato con motore Walter, e raggiunse una velocità in immersione di 28,1 nodi. La velocità raggiunta in superficie con questa unità non è stata specificata nei documenti di prova; lo scafo, tuttavia, era ottimizzato per la navigazione subacquea. Gli U-Boot tipo Wa 201 e Typ Wk 202 erano sottomarini (U-Boot) con propulsione Walter. Di ognuno dei due modelli di natante ne furono costruiti due esemplari, per le prove di durata. Del primo tipo Wa 201 U 792 e U 793 e del tipo Wk 202 U 794 e U 795 erano sottomarini con sistema Walter. Nel maggio del 1943, dopo l'aumento delle perdite di sottomarini i piani della Kriegsmarine, che prevedevano un maggior numero di sottomarini più grandi con propulsione Walter (i tipi classe XVII, classe XVIII e classe XXVI), non vennero mai portati a termine.
Il Grande Ammiraglio Erich Raeder fermò il loro ulteriore sviluppo e questo ordine incluse anche la turbina Walter. Soltanto quando lo stesso Hitler accusò Raeder di incompetenza (le grandi navi da battaglia ottenevano scarsi risultati, mentre i sottomarini si erano rivelati molto efficaci), Raeder si dimise e venne sostituito dal plenipotenziario per i sottomarini (BdU = Befelshaber der U-Boote), Contrammiraglio Karl Doenitz, venne avviato l'ulteriore sviluppo degli U-Boot con grandi mezzi.
Solo tre unità della classe XVII tipo B sono stati posti in servizio nel 1944, ma mai utilizzati. I sottomarini tipo XVIII, sviluppati per essere equipaggiati con il motore Walter, vennero utilizzati invece montando motori elettrici convenzionali, poiché il propulsore Walter non era stato ancora completato (il tipo XVIII era simile -nel suo aspetto esterno- al tipo XXI effettivamente prodotto).
L'U 1407, un sottomarino costruito dalla Blohm & Voss appartenente alla classe XVII, al termine del conflitto fu portato in Inghilterra e, con la nuova designazione HMS Meteorite, avviato a una serie di prove sperimentali che si protrassero fino al 1946; il motore Walter venne identificato con la sigla H.T.P. (High Test Peroxide). Dal 1951 al 1959 l'URSS, ha costruito per proprie prove, il sottomarino S-99, ma lo mise presto fuori servizio dopo una serie di incidenti. Nel 1956 e 1958, vennero messi in servizio i sottomarini Explorer e Excalibur. Essi sono gli unici sottomarini inglesi con propulsione HTP. Nel corso delle prove si verificarono una serie di danni provocati da esplosioni nel motore, cosicché l'equipaggio di Explorer rinominò, sarcasticamente, la loro nave "Exploder". Hellmuth Walter concepì nel 1960 un batiscafo per profondità di immersione fino a 5000 m. Il progetto fu chiamato STINT, doveva essere azionato con una turbina Walter con processo freddo, ma non fu mai realizzato. Il motore Walter non venne mai prodotto in serie per la mancanza di esperienza pratica, ma viene ancora considerato un buon sistema propulsivo indipendente da aerazione esterna (acronimo inglese AIP = Air-Independent Propulsion). L'evoluzione modificata dei sottomarini ha reso tuttavia superato il sottomarino rumoroso ma veloce. La tendenza si è rivolta chiaramente verso natanti più lenti forse ma più silenziosi quindi più difficili da localizzare.
Il principio della propulsione Walter fu usato anche per la catapulta di lancio delle V-1 nonché come generatore di vapore per la turbopompa del combustibile del meccanismo motore del razzo V2 (Aggregat 4). Per poter produrre le grandi quantità di perossido d'idrogeno ad alta concentrazione necessarie, la marina da guerra tedesca costruì, a partire dal 1938, due grandi stabilimenti a Bad Lautenberg e a Rhumspringe, sotto il nome in codice Schickert-Werke.
Tattiche di base dei sottomarini nella seconda guerra mondiale
Le tattiche dei sottomarini tedeschi nella Seconda Guerra Mondiale furono fortemente influenzate dalle esperienze della prima. Il Capitano (in seguito Grande Ammiraglio) Karl Dönitz, l'ufficiale responsabile dei sottomarini, e più tardi della stessa Kriegsmarine, era stato un comandante di sottomarini durante la prima guerra mondiale. Nella prima guerra, i sottomarini operavano da soli, attaccando principalmente obiettivi di opportunità. Dönitz era determinato a cambiare la situazione. Istituì un sistema di controllo radio dal suo quartier generale nella Francia occupata che gli consentì di trasportare diverse barche sullo stesso convoglio. Una volta ingaggiate, le barche operavano in modo indipendente contro il convoglio, poiché il coordinamento era molto più difficile durante la battaglia vera e propria. L'opzione preferita era l'attacco notturno di superficie.
L'uso di tattiche di superficie una volta impegnato con un convoglio riconosceva a quel tempo un limite importante alla tecnologia sottomarina. I sottomarini della Seconda Guerra Mondiale erano essenzialmente navi di superficie. Si tuffavano solo per sfuggire all'attacco o per sferrare un attacco. Dato che la velocità massima in immersione di un sottomarino era di circa 6~8 nodi, mentre in superficie poteva fare dai 18 ai 20 nodi, e quella velocità massima in immersione era possibile per non più di circa un'ora iniziando con una batteria completamente carica, non era pratico inseguire un bersaglio di superficie mentre si era sommersi. Questa velocità limitata significava anche che era più difficile per un U- Boot sommerso manovrare per sfuggire a un aggressore, ed era assolutamente precluso tentare di scappare da uno di essi.
I progressi degli alleati nella guerra antisommergibile, in particolare l’uso di aeroplani provenienti da portaerei di scorta e di radar aviotrasportati, resero presto le operazioni di superficie estremamente pericolose. Eppure i sottomarini, almeno all’inizio, non avevano altra scelta se non quella di trascorrere gran parte del loro tempo in superficie. Erano necessarie enormi quantità di aria per far funzionare i motori diesel che li spingevano in superficie e caricavano le batterie che usavano quando erano immersi.
E, anche se i tedeschi non lo seppero se non anni dopo la guerra, il sistema di controllo centrale di Dönitz fu in gran parte responsabile non solo dei loro primi successi, ma anche dei loro successivi problemi. Per gran parte della guerra, gli inglesi decodificarono le comunicazioni tedesche quasi con la stessa rapidità dei tedeschi stessi. Gli aerei dotati di radar potevano individuare un sottomarino molto più rapidamente quando sapevano già dove guardare, grazie al fatto che la barca doveva dire al quartier generale dove si trovava.
Propulsione indipendente dall'aria per sottomarini.
La soluzione ovvia al problema noto era un sistema di propulsione che non necessitasse di aria esterna. Il sistema AIP moderno più comune è l’energia nucleare. Tuttavia, ciò non divenne pratico fino agli anni '50. La fisica di base era nota già negli anni '30, ma c'erano troppi problemi da superare prima di poter costruire un pratico sottomarino a propulsione nucleare. Non ultimo di questi problemi era la dimensione. Il motivo principale per cui i sottomarini nucleari sono molto più grandi dei sottomarini diesel è la dimensione del reattore. La Germania avrebbe potuto costruire navi nucleari per la seconda guerra mondiale? Forse, ma avevano anche Hitler da affrontare, e Hitler era un pensatore a breve termine quando si trattava di armi. Voleva qualcosa che potesse essere costruito adesso e completato al massimo entro pochi mesi, non barche che avrebbero impiegato dieci o più anni per entrare nella flotta. (Quasi tutti, tranne Hitler, volevano aspettare fino al 1945 circa per iniziare la guerra, ma fortunatamente riuscì a farlo, il che significava che ci trovavamo di fronte alla Germania del 1939, e non alla Germania con una potente flotta di superficie, portaerei e centinaia di di sottomarini che sarebbe stata affrontata sei anni dopo. Se avessero aspettato fino al 1945, forse avrebbero vinto).
Una soluzione provvisoria è stata l'adozione dello snorkel. Si trattava di un albero cavo, con una valvola a galleggiante per tenere fuori l'acqua, che consentiva di aspirare l'aria nella barca mentre era immersa. Ciò significava che i motori diesel potevano essere utilizzati in immersione, con solo la testa del boccaglio esposta. Era ancora un obiettivo, ma molto più piccolo.
Tuttavia, il boccaglio era, nella migliore delle ipotesi, una soluzione provvisoria. Il sottomarino doveva rimanere vicino alla superficie e durante lo snorkeling durante il giorno sarebbe spesso visibile dall'aria. La testa del boccaglio era più piccola di un sottomarino, ma era comunque abbastanza grande da poter essere rilevata dal radar. Furono provati rivestimenti anti- radar, con un certo successo, e furono incorporati rilevatori radar nelle teste. Sebbene il boccaglio riducesse in qualche modo la vulnerabilità, ovviamente era necessario qualcosa di meglio.
Negli anni '30, il professor Helmuth Walter (non Walther, che è un produttore di armi da fuoco) iniziò a sperimentare il perossido di idrogeno come possibile combustibile. All'inizio degli anni '40, la ricerca di Walter era progredita al punto che riuscì a convincere la Kriegsmarine a costruire alcuni prototipi di sottomarini. Nel 1943, una turbina Walter fu utilizzata per alimentare un sottomarino di prova disarmato ad una velocità di 26 nodi. Questo era circa 13 nodi più veloce di quanto il sottomarino convenzionale più veloce dell'epoca potesse gestire in immersione, e in realtà circa cinque nodi più veloce delle più comuni scorte alleate. (Dato che 21 nodi è circa la velocità massima alla quale è possibile utilizzare Asdic, e comunque pochissime navi mercantili erano più veloci di circa 15 nodi, non si riteneva necessario che le scorte fossero molto più veloci).
Sono stati elaborati progetti per diversi tipi di sottomarini Walter. Alla fine, nessuno è mai diventato operativo. Il design della grande barca Walter Typ XVIII divenne tuttavia la base per l' Electroboot Typ XXI , che stava per essere schierato quando la Germania si arrese.
Design dello scafo integrale
Oltre alla turbina Walter vera e propria, il professor Walter ha progettato personalmente le barche. Riconobbe che i progetti convenzionali dello scafo dei sottomarini erano ottimizzati per le operazioni di superficie, ma erano terribilmente inefficienti quando erano sommersi. I suoi progetti rimuovevano i cannoni sul ponte e altre sporgenze, che causavano resistenza. Gli scafi furono snelliti, diventando più arrotondati. I fairwater e i ponti della torre di collegamento furono sostituiti da progetti con una piccola cabina di pilotaggio e superfici superiori placcate lisce per ridurre la resistenza e, con essa, la quantità di rumore che le barche generavano sott'acqua. I risultati furono progetti che in realtà erano più veloci in immersione che in superficie. Inoltre tendevano ad essere più grandi dei modelli convenzionali, e quindi più lenti nell'immersione, ma questo svantaggio era compensato da un design che rendeva generalmente non necessaria la presenza delle barche in superficie tranne quando entravano e uscivano dal porto.
Anche se nessuna imbarcazione Walter entrò in servizio, la Typ XXI, che utilizzava il design dello scafo della più grande imbarcazione Walter, con gli enormi serbatoi di peridrolo sostituiti da batterie extra e alimentata in modo convenzionale, entrò in servizio proprio alla fine della guerra. L'unico esemplare che era in grado di sferrare un attacco non lo fece, poiché l'ordine di cessate il fuoco era appena stato ricevuto, ma il suo ufficiale in comando, Korvettenkapitän Adelbart Schee, fece comunque un finto attacco, avvicinandosi entro 1600 iarde dall'HMS Norfolk prima di scivolare. lontano. Dopo che Schnee tornò in porto e si arrese, il comandante di Norfolk si rifiutò di credere alla sua storia finché i rispettivi registri non furono confrontati e fu dimostrato che entrambe le navi si trovavano, in effetti, nella stessa posizione e alla stessa ora nel giorno in questione.
Ciò che Walter immaginava era il passaggio da una torpediniera subacquea a un vero sottomarino. I suoi progetti di scafo aerodinamico furono la base della maggior parte dei sottomarini del dopoguerra fino a quando lo scafo Albacore a forma di lacrima li sostituì. Il primo sottomarino nucleare, l'USS Nautilus, era essenzialmente uno scafo Walter ingrandito con una centrale nucleare. (Anche se uno sguardo più attento a entrambi gli scafi suggerisce che il Nautilus potrebbe dover di più al design aerodinamico giapponese dell'I- 201, che era leggermente più veloce delle barche tedesche).
La turbina Walter
Walter ha raggiunto le sue notevoli velocità utilizzando il peridrolo, un perossido di idrogeno quasi puro, come ossidante. Questo veniva fatto passare attraverso un sistema catalizzatore, che scomponeva il perossido di idrogeno (H2O2) in idrogeno e ossigeno, producendo nel processo vapore ad alta pressione e ossigeno a una temperatura molto elevata. La creazione del vapore ha consumato sia gli atomi di idrogeno che uno di ossigeno, lasciando nella miscela un atomo di ossigeno libero. Poiché la temperatura dei gas era sufficientemente elevata da sostenere la combustione, veniva iniettato carburante diesel, che consumava l'atomo di ossigeno libero mentre bruciava. Ciò ha aumentato sia il calore che la pressione del vapore. Il vapore veniva quindi utilizzato per alimentare una turbina, che combinava elementi della tecnologia delle turbine a gas e Parsons (a vapore).
Sfortunatamente per la Kriegsmarine, ma probabilmente fortunatamente per gli Alleati, il sistema Walter presentava quasi tanti problemi quanti vantaggi. Il carburante Peridrolo era estremamente corrosivo e richiedeva l'uso di tubazioni di carburante speciali. Un altro problema, scoperto dai giapponesi, che usarono lo stesso carburante in alcuni siluri, incluso un prototipo Kaiten, era che il Peridrolo, a differenza dei carburanti convenzionali, richiedeva linee di carburante senza curve ad angolo retto. I giapponesi scoprirono che il peridrolo a volte si “accumulava” nelle curve strette e bruciava spontaneamente, con ovvi risultati disastrosi. Anche se ai giapponesi ovviamente non importava se un pilota Kaiten moriva, volevano che ciò accadesse quando aveva lanciato il suo siluro umano contro una nave nemica, non durante l'addestramento, quindi diagnosticarono e risolsero il problema del tubo del carburante e ne parlarono ai tedeschi. Esso.
Un altro inconveniente era che il sistema Walter consumava molta sete. Uno dei motivi per cui i sottomarini erano molto più grandi era quello di ospitare gli enormi serbatoi di carburante necessari per garantire alle barche un'autonomia ragionevole.
Il sottomarino Walter tipo XXVIw
L’unità Typ XXVIw Walter impiegata in With Honor in Battle non fu mai effettivamente costruita, anche se furono stipulati contratti e alcune sezioni iniziarono. Pertanto, i dati sulle prestazioni citati nel romanzo sono solo stime, e probabilmente un po’ troppo ottimistiche. Per scopi drammatici, sono state prese anche alcune libertà con l'equipaggio. Avevo bisogno di più ufficiali, per prima cosa, quindi il mio U -2317 ha sette ufficiali, mentre un vero Typ XXVIw ne avrebbe avuti tre.
Ci sono anche alcuni altri errori, per lo più il risultato di errori nei materiali di riferimento disponibili nel momento in cui ho iniziato a scrivere il libro negli anni '70. Le descrizioni in quei vecchi libri sembrano aver combinato elementi di diversi progetti Walter nella descrizione di questo. Ad esempio, le informazioni disponibili a quel tempo suggerivano che la barca Walter da 850 tonnellate avesse due alberi e dieci tubi lanciasiluri che sparavano in avanti. In effetti, il progetto attuale prevedeva un unico albero e sei tubi sparati verso poppa. Inoltre, a differenza della maggior parte dei sottomarini dell'epoca, il centro d'attacco era nella sala di controllo, o Zentrale. Nessuna di queste differenze tecniche influisce sulla storia, ovviamente, e probabilmente sarebbero state notate solo da studiosi molto seri degli U-boat, ma furono comunque corrette quando fu rilasciata la prima edizione eBook e nel tascabile Riverdale.
Dopo la seconda guerra mondiale, diverse marine tentarono di continuare lo sviluppo della turbina Walter. Alla fine tutti abbandonarono il progetto perché troppo pericoloso. La maggior parte, tuttavia, adottò molte delle idee del professor Walter per quanto riguarda la progettazione dello scafo. Lo sviluppo di reattori nucleari sufficientemente piccoli da poter essere utilizzati in un sottomarino negli anni '50 pose definitivamente fine alla ricerca sulla propulsione del peridrolo, ad eccezione dei siluri. La maggior parte dei paesi ha ormai rinunciato anche a questi. Si sospetta che un siluro difettoso alimentato a perossido di idrogeno sia la causa principale dell'affondamento del sottomarino russo Kursk nel 2000.
Negli ultimi anni c'è stato un notevole rinnovato interesse per i sottomarini AIP. Le navi nucleari sono costose da costruire e molti paesi sono più preoccupati della difesa costiera che di operare a grandi distanze dai porti. I progetti moderni, tuttavia, tendono maggiormente all’uso di motori AIP a ciclo Sterling o di celle a combustibile a idrogeno per la generazione di elettricità (Vgs. Type 212).
Ripensare la guerra, e il suo posto
nella cultura politica europea contemporanea,
è il solo modo per non trovarsi di nuovo davanti
a un disegno spezzato
senza nessuna strategia
per poterlo ricostruire su basi più solide e più universali.
Se c’è una cosa che gli ultimi eventi ci stanno insegnando
è che non bisogna arrendersi mai,
che la difesa della propria libertà
ha un costo
ma è il presupposto per perseguire ogni sogno,
ogni speranza, ogni scopo,
che le cose per cui vale la pena di vivere
sono le stesse per cui vale la pena di morire.
Si può scegliere di vivere da servi su questa terra, ma un popolo esiste in quanto libero,
in quanto capace di autodeterminarsi,
vive finché è capace di lottare per la propria libertà:
altrimenti cessa di esistere come popolo.
Qualcuno è convinto che coloro che seguono questo blog sono dei semplici guerrafondai!
Nulla di più errato.
Quelli che, come noi, conoscono le immense potenzialità distruttive dei moderni armamenti
sono i primi assertori della "PACE".
Quelli come noi mettono in campo le più avanzate competenze e conoscenze
per assicurare il massimo della protezione dei cittadini e dei territori:
SEMPRE!
….Gli attuali eventi storici ci devono insegnare che, se vuoi vivere in pace,
devi essere sempre pronto a difendere la tua Libertà….
La difesa è per noi rilevante
poiché essa è la precondizione per la libertà e il benessere sociale.
Dopo alcuni decenni di “pace”,
alcuni si sono abituati a darla per scontata:
una sorta di dono divino e non,
un bene pagato a carissimo prezzo dopo innumerevoli devastanti conflitti.…
…Vorrei preservare la mia identità,
difendere la mia cultura,
conservare le mie tradizioni.
L’importante non è che accanto a me
ci sia un tripudio di fari,
ma che io faccia la mia parte,
donando quello che ho ricevuto dai miei AVI,
fiamma modesta ma utile a trasmettere speranza
ai popoli che difendono la propria Patria!
Violenza e terrorismo sono il risultato
della mancanza di giustizia tra i popoli.
Per cui l'uomo di pace
si impegna a combattere tutto ciò
che crea disuguaglianze, divisioni e ingiustizie.
Signore, apri i nostri cuori
affinché siano spezzate le catene
della violenza e dell’odio,
e finalmente il male sia vinto dal bene…
(Fonti: https://svppbellum.blogspot.com/, Web, Google, jtmcdaniel, Wikipedia, You Tube)
Nessun commento:
Posta un commento